Electronic Supplementary Information

High-throughput Single-cell Cultivation Reveals Underexplored Rare Biosphere in Deep-sea Sediments Along the Southwest Indian Ridge[†]

Beiyu Hu^{a, b}, Bingxue Xu^{a, b}, Juanli Yun^a*, Jian Wang^a, Bingliang Xie^{a, b}, Caiming Li^{a, b}, Yanghuan Yu^d, Ying Lan^a, Yaxin Zhu^a, Xin Dai^{a, b}, Ying Huang^{a, b}, Li Huang^{a, b}, Jianzhang Pan^e*, Wenbin Du^{a, b}, c *

^a State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

^b College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

^c Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China

^d College of Life Sciences, Zhejiang University, Hangzhou 310058, China

^e Department of Chemistry, Zhejiang University, Hangzhou 310058, China

* Correspondence:

Corresponding Authors, yunjl@im.ac.cn (J. Y.), kelvonpan@zju.edu.cn (J. P.), wenbin@im.ac.cn (W. D.).

Design and operation of the Droplet Picker.

The first version of the MSP platform uses toothpicks to transfer droplet colonies into the well plates, which is not friendly for the operator because the droplet size was only hundreds micrometers and led to low isolation rate of microbes because many droplets were empty. In this work, we improved the platform with a semi-automatic Droplet Picker to accelerate the process. The picker used pump driven capillary Teflon tubing to aspirate droplet and then transfer cell suspensions to the microwell plates, which greatly reduce the contamination and also improve the recover ratios with more cells. Commercial available pickers were mostly designed for mammal cells pick which is expensive and based on air pressure and capillary glass which is not suitable for general application of MSP. So in this study, the Droplet Picker was made by ourselves.

The assembly of the picker is very simple, a syringe pump, a low cost manual X-Z translation stage, a Teflon tubing (capillary tip), a 3D printed support arm, tubing holder and dish clip are all what we need (Figure 2A). The process of picking droplets needs to touch the surface of MSP Petri dish which may cause deformation of tubing, so a 150-µm Teflon tubing was chosen rather than glass capillary. The Teflon tubing was prefilled with mineral oil and connected to the syringe, which can precisely control the aspirate. A 3D printed dish clip was used to fix the MSP Petri dish which can allow to track the spiral droplets array of MSP continually. After assembly and preparation, we can start droplet picking. First, we revolved the droplets Petri dish according to spiral tracks of droplets and the droplets were observed one by one with inverted microscope. Second, when droplets with bacteria growth was confirmed, we located the Droplet Picker to the target droplet by adjust the translation stage at x axes or by revolve the Petri at y axes. Third, after locating the target droplet, adjust the translation stage at z axes to touch the droplet and 200 nL liquid was aspirated immediately with a flow speed of 200 nL/s by the programmed Harvard pump. At last, 300 nL liquid in Teflon tube was discharged into a 96-well plate at a flow speed of 300 nL/s for scale up cultivation. Each microwell contained 100 µL M13 medium and 100 µL mineral oil. It took 20 seconds for one droplet, demonstrating that our droplet picker can save us time and liberate human hands at the same time compare to the previous MSP platform (Figure 2B, Supplementary Movie 1).

Since we used the same Teflon tubing repeatedly to pick up several droplets, the residual cells adhered on the inner-tubing wall might be a threaten to the next droplet, which often lead to cross-contamination. We confirmed the contamination with GFP-contained *E.coli* RP1616 cells, and showed a 94.4% cross-contamination. In order to overcome the contamination, we washed the tubing with 75%

ethanol three times and once with sterile water after one picking consecutively. The results showed that after the addition of washing step, the cross-contamination ratio decreased to zero. This indicated that the washing step can control the cross-contamination effectively. The whole process of washing was controlled by the programmed Harvard pump. In the later experiment, the washing step was incorporated (Supplementary Figure S1B).

The microbial diversity of SWIR

The microbial taxa detected in the original sediments showed highly diverse community compositions, including 56 phyla, 58 classes, 107 orders, 177 families, and 312 genera within the 2929 OTUs, and both archaea and bacteria were found to be abundant at the site. At the phylum level, *Thaumarchaeota* was the most abundant (40.3±18.6%) archaeal group, followed by Proteobacteria (33.7±16.0%) in bacterial group. Other taxa, including *Chloroflexi* (4.9±1.2%), *Actinobacteria* (3.8±2.0%), Acidobacteria (3.7±1.1%), Firmicutes (2.6±1.7%), Gemmatimonadetes (2.1±1.0%), Nitrospirae $(1.4\pm0.5\%)$, and *Bacteroidetes* $(1.4\pm0.2\%)$, were also detected in the site, but at much lower relative abundance (Fig. S3C). At the class level, the ammonia oxidation archaea, *Nitrososphaeria*, was the most abundant taxa. The Alphaproteobacteria (14.6±7.1%) and Gammaproteobacteria (14.6±6.7%) were the most abundant classes in the Proteobacteria phylum. At the order level, two unclassified orders were detected in *Proteobacteria*, accounting for 6.2% and 8.4% of the total reads, respectively (Fig. S3C). In the eight samples with culture-based sequencing methods (M1-M4, A1-A4), 19 and 14 phyla were detected in MSP pool and agar pool respectively. And 3 phyla including *Melainabacteria*, Synergistetes and Deferribacteres that only detected in MSP pool or agar pool were not fund in original samples. The relative abundance of major bacterial phyla presents in the MSP pool cultivation and agar pool cultivation varied considerably to the original sediments communities. The most abundant phylum in all samples were changed to *Proteobacteria* except for sample A1 which is *Bacteroidetes* (Fig. S3B). The community composition detected in this study is similar to that of previous studies. An investigative study of inactive hydrothermal vents in the SWIR found that *Thaumarchaeota* was the most abundant microbial group¹. In the Central Indian Ridge, Arctic Mid-Ocean Ridge, and Western Pacific Ocean, Thaumarchaeota was also widely detected²⁻⁴. The abundant distribution of Alphaproteobacteria and Gammaproteobacteria were also reported in Iheya North, Iheya Ridge, and metal-rich vent sediments from Pacific Ocean hydrothermal fields^{5, 6}.

References

- 1 L. Zhang, M. Kang and J. Xu, et al., *Sci. Rep.*, 2016, **6**, 25982.
- 2 A. Jaeschke, B. Eickmann and S. Q. Lang, et al., *Extremophiles*, 2014, **18**, 545-560.
- 3 J. Li, X. Peng and H. Zhou, et al., J. Microbiol., 2014, **52**, 111-119.
- 4 Y. Suzuki, F. Inagaki and K. Takai, et al., *Microbiol. Ecol.*, 2004, **47**, 186-196.
- 5 J. Zhang, Q. L. Sun and Z. G. Zeng, et al., *Microbiol. Res.*, 2015, 177, 43-52.
- 6 L. Liao, X. W. Xu and X. W. Jiang, et al., *Fems Microbiol. Ecol.*, 2011, **78**, 565-585.

Supplementary Figures

Figure S1. Droplet evaporation comparison of improved method and the original MSP method. (A) a picture of the MSP Petri dish; (B) Original means the method to prevent droplet evaporation in previous study (2016) and New means the method used in this study. The MSP droplets were put in 30 °C isothermal incubator with for up to 12 days. The time-lapse fluorescence photomicrographs were taken at T=0, 1, 2, 3, 6, 12 days. Scale bar is 150 μ m.

Figure S2. (A) The droplets evaporation control by recording the microscopic images of MSP droplets with long-term observation up to 5 months at room temperature (~20 °C); Scale bar is 150 μ m; (B) Contamination control with Droplet Picker: droplets with GFP-*E.coli* encapsulated called *E.coli* and without bacteria called blank, the two types of droplets were picked continually one by one.

Figure S3. (A)Rarefaction curves based on 16S rRNA gene high throughput sequencing of bacterial communities of Samples, MSP Pool and Agar Pool; (B) Microbial diversity of MSP pool and Agar pool: top ten abundant phylum were showed in the bar charts. (C) The microbiome composition of the original sediment samples at the phylum, class and order levels.

Supplementary tables

Phylogenetic affiliation	Isolate name	GenBank acc.No	Isolates	Closest Cultivated Species	Similarity (%)
Proteobacteria	P13-D3	MK318603	1	Aquabacter spiritensis DSM 9035(T)	96.67
	P9-C10	MK318595	1	Sphingomonas astaxanthinifaciens DSM	97.35
	P13-B11	MK318604	52	Novosphingobium aromaticivorans DSM	97.78
	P8-D1	MK318630	2	Sphingomonas aquatilis JSS7(T)	98.1
	P4-E9	MK318586	2	Sphingomonas sanxanigenens DSM 19645(T)	98.26
	P3-F12-3	MK318596	1	Novosphingobium lindaniclasticum LE124(T)	98.46
	P7-D12	MK318593	16	Sphingomonas melonis DAPP-PG 224(T)	98.61
	P9-A2	MK318627	1	Paracoccus sediminis DSM 26170(T)	98.62
	P7-B6	MK318617	1	Sphingomonas wittichii RW1(T)	98.66
	P1-H3	MK318607	5	Sphingomonas leidyi ATCC 15260(T)	98.75
	P2-A8	MK318600	1	Alcanivorax jadensis T9(T)	98.79
	P1-D1	MK318568	8	<i>Thalassospira tepidiphila</i> 1-1B(T)	99.13
	P7-D5	MK318629	1	Methylobacterium aquaticum DSM 16371(T)	99.15
	P1-C3	MK318571	113	Sulfitobacter pontiacus DSM 10014(T)	99.19
	P2-D6	MK318609	1	Pseudomonas xanthomarina DSM 18231(T)	99.21
	P3-C10	MK318594	5	Erythrobacter pelagi UST081027-248(T)	99.34
	P1-C4	MK318602	1	Pseudomonas zhaodongensis NEAU-ST5-	99.43
	P14-E8	MK318637	4	Stenotrophomonas maltophilia MTCC 434(T)	99.47
	P3-B7-2	MK318579	6	<i>Pseudomonas hunanensis</i> LV(T)	99.58
	P2-F3-1	MK318585	2	Celeribacter manganoxidans DY2-5(T)	99.63
	P5-A11	MK318624	3	Sphingomonas leidvi ATCC 15260(T)	99.63
	P8-F3	MK318636	29	Pseudomonas hibiscicola ATCC 19867(T)	99.68
	P3-B7-1	MK318601	3	Brevundimonas vesicularis NBRC 12165(T)	99.7
	P5-A12	MK 318623	2	Sphingomonas ginsenosidimutans KACC	99.7
	P2-C6	MK318578	1	Thalassosnira indica PB8B(T)	99 71
	P2-A11	MK318581	1	Stenotrophomonas rhizophila DSM 14405(T)	99.72
	P9-A4	MK 318598	4	Methylobacterium oryzae CBMB20(T)	99.78
	P5-D10	MK 318618	5	Sphingomonas zeae IM-791(T)	99.78
	P2-C8	MK 318584	1	Alcanivorax venustensis ISO4(T)	99 79
	P3-A10	MK 318599	3	Sphingomonas paucimobilis NBRC 13935(T)	99.85
	P6-H3	MK318611	2	Caulobacter vibrioides CB51(T)	99.85
	P13_H3	MK 318622	6	Stenotronhomonas indicatrix WS40(T)	99.86
	P2-D3	MK 318582	1	Citreicella marina CK-I3-6(T)	99.93
	P2-45	MK 318590	1	Envthrobacter citreus RF35F/1(T)	99.93
	P3-47-2	MK 318597		Brevundimonas aurantiaca DSM 4731(T)	99.93
	P4_F11	MK 318628	1	Halomonas alkaliantarctica CRSS(T)	99.93
	D8 A7	MK318613	2	Mathylohastarium radiotolorans ICM 2821(T)	100
	D5 E0	MK318610	1	Methylobucierium rudioioleruns JCM 2851(1) Methylopubrum rhodesignum DSM 5687(T)	100
	D8 E7	MK318676	1	Sphingomongs melonis DAPP DG 224(T)	100
Activobactoria	D14 E7	MK218616	1	Nonagedioidas iriomotoresis IP27 \$2(T)	07.21
Αςτιποσαςτεγια	F14-E/ D8 E7	MK318610	1	Goodormatophilus africanus (F11/1(T)	97.51
	D5 F1	MK318635	1	Microbactorium ginsangisoli DSM 18650(T)	98.53
	$\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{A} \mathbf{A}$	MK318023	1	Pseudarthrobacter signification DSM 18039(1)	98.55
	D14 C11	MK318592	1	Nogardioidas fumisabuli SPS 26(T)	99
	Г14-UII D2 D2	WK2196051	1	Williamsia sorinadons DSM 45027(T)	99.04 00.05
	т э-рэ рл ц1э	MK 210601	24	muunisu sermeuens DSW 4303/(1) Mierobaetarium protoobstieum D726(T)	99.03
	г4-г112 D10 E4	MK210567	34 1	Restococcus sayobsidars DC449(T)	99.12 00.12
	F10-E4	MV210572	1	Jusiococcus survoisiuens DC440(1)	77.13 00.14
	РІ-ВІ2-2 D12 C9	NIK3183/2 MV 219577	1	Arinrodacier dambusae GM18(1) Providenceardia tropica VIM 61452(T)	99.14
	P12-C8	NIK3183//	1	r seudonocarata tropica Y IW 61452(1) P and p store pitnos r in r (2) 1(T)	99.21
	r1-D12	WINJ18383	∠ 10	r aenarinrobacier nilroguajacolicus G2-1(1) Muoch actoucidos agon gulues - EDM 1000((T)	99.21 00.22
	_ P9-D8	MK318569	12	<i>Mycobacteroides saopaulense</i> EPM 10906(T)	99.22

Table S1: Bacterial strains isolated from the SWIR sediments with MSP

	P1-E12	MK318573	1	Microbacterium paraoxydans NBRC	99.23
	P3-C5	MK318580	1	Blastococcus aggregatus DSM 4725(T)	99.36
	P1-B4	MK318587	16	Arthrobacter subterraneus CH7(T)	99.36
	P6-H2	MK318612	1	Mycolicibacterium phocaicum CIP 108542(T)	99.42
	Р9-Н5	MK318634	3	<i>Mycobacteroides abscessus subsp. bolletii</i> BD(T)	99.47
	P14-F5	MK318635	4	Janibacter melonis CM2104(T)	99.47
	P2-B10	MK318606	2	Dietzia maris DSM 43672(T)	99.49
	P1-A7	MK318591	2	Micrococcus yunnanensis YIM 65004(T)	99.5
	P13-A9	MK318608	3	Microbacterium laevaniformans DSM	99.55
	P2-E8	MK318615	1	Micrococcus antarcticus T2(T)	99.56
	P9-C11	MK318570	18	Mycobacteroides saopaulense EPM 10906(T)	99.65
	P1-A12	MK318588	7	Microbacterium phyllosphaerae DSM	99.71
	P10-E5	MK318614	1	Agrococcus citreus IAM 15145(T)	99.78
Firmicutes	P3-H5	KY800370	6	Oceanobacillus profundus CL-MP28(T)	95.86
	P3-B8	KY800371	48	Ornithinibacillus contaminans CCUG	95.89
	P2-C2	KY800369	1	Virgibacillus halodenitrificans DSM 10037(T)	96.77
	Р3-Е4	MK318575	1	<i>Staphylococcus capitis subsp. urealyticus</i> GTC 727(T)	99.38
	P13-G7	MK318632	1	Staphylococcus hominis subsp. novobiosepticus GTC 1228(T)	99.69
	P12-B3-1	MK318620	1	Staphylococcus hominis subsp. hominis DSM 20328(T)	99.71
	P3-B2	MK318574	1	Terribacillus goriensis CL-GR16(T)	99.93
	P10-H1-2	MK318589	1	Bacillus altitudinis 41KF2b(T)	99.93
	P3-F12-2	MK318610	2	Staphylococcus warneri ATCC 27836(T)	100
Deinococcus- Thermus	P10-H1	MK318576	1	Deinococcus taklimakanensis X-121(T)	99.28