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Supplementary Figure S1 Calculated real part of the Clausius-Mossotti factor of
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Figure S1. Calculated real part of the Clausius-Mossotti factor ( ) of microalgal cells having different 𝑅𝑒[𝑓𝐶𝑀]

lipid content, when medium conductivity is set to 0.04 S/m. The measured average cell size of 7.6  0.6 ±

µm was used, and the cytoplasm conductivity was set to 0.5 S/m in the case of no intracellular lipid (1). 

The cytoplasm conductivity was calculated to be 0.4, 0.25, and 0.1 when intracellular lipid content 

increased to 25, 50, and 80% of cell volume, respectively. This resulted in decreased magnitude of 

 at the frequency of 3 MHz.𝑅𝑒[𝑓𝐶𝑀]
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Figure S2. Calculated (a) -directional pDEP force and (b) lateral displacements per single electrode 𝑥

positioned at an angle of 5.7° to the direction of flow, with cell’s cytoplasm conductivities varying from 
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). The calculated -directional pDEP force  The hatched bar on 𝑥

the x-axis represents a single electrode in -axis as shown in Fig. 1 (also see image in the inset). Based on 𝑥

the simplified line charge model represented by equation (1) in the main document, the pDEP force and 

lateral displacements were numerically calculated using a program written in C language. The graphs show 

that decreased cytoplasm conductivity results in decrease of the magnitude of pDEP force at the edge of 

electrode, and thus decrease of lateral displacement. The diameter of microalgae was set to 7.6 µm and 

 was set to 0.17, 0.32, 0.37, and 0.39 calculated in Fig. S1 when cytoplasm conductivities were 0.1, 𝑅𝑒[𝑓𝐶𝑀]

0.25, 0.4, and 0.5, respectively. Other parameters used were ,   n = 1 to 4, and 𝑧 = 7.6 µ𝑚 𝑣𝑎 = 5 𝑉𝑟𝑚𝑠,

. 𝜂 = 0.96 × 10 ‒ 3 𝑁 ∙ 𝑠/𝑚2
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Figure S3. Calculated lateral displacements per single electrode positioned at an angle of 5.7° to the 

direction of flow, with different cell sizes (7 (
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) ) and different cytoplasm µ𝑚

conductivities ( ) (0.5, 0.4, 0.25, and 0.1 S/m). The graphs show that as the cytoplasm conductivity 𝜎

decreases, the lateral displacement is dominated by cytoplasm conductivity, rather than cell size. Other 

parameters used were  = cell diameter,  n = 1 to 4, and . 𝑧 𝑣𝑎 = 5 𝑉𝑟𝑚𝑠, 𝜂 = 0.96 × 10 ‒ 3 𝑁 ∙ 𝑠/𝑚2
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Figure S4. The fabricated lateral DEP microfluidic platform. 
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Figure S5. Flow cytometry characterization of lipid level of 12 mutants randomly selected from the first 

round of EMS mutant screening process, compared to the beginning population (CC-406 culture in TAP-N 

media for 72 hr). The average of BODIPY fluorescence intensity of each mutant was indicated in each 

graph with standard deviation. Among the 12 mutants, mutant #5 showed the highest average BODIPY 

fluorescence intensity, which was 1.4 times higher (1262 ± 520 (a.u.)) compared to that of wild-type CC-

406 cells (914 ± 498 (a.u.)).



8

Figure S6. Flow cytometry characterization of lipid level of 22 mutants randomly selected from the 

screening process using EMS-mutated 1st-mutant #5, compared to the beginning population (CC-406 

culture in TAP-N media for 72 hr). The average BODIPY fluorescence intensity of each mutant was 

indicated in each graph with standard deviation. Among the 22 mutants, mutant #16 showed the highest 

average BODIPY fluorescence intensity, which was 1.6 times higher (2232 ± 942 (a.u.)) compared to that 

of wild-type CC-406 cells (1388 ± 716 (a.u.)).
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As shown in the flow cytometry analysis in Fig. S7, the average BODIPY-stained lipid fluorescence intensity 

of control (CC-406 cells with no lipid) was 6.0  3.0 (  104 a.u.). As expected, increased incubation time ± ×

in TAP-N media resulted in increased intracellular lipid level, thus the fluorescence intensities of each 

sample cultured in TAP-N media for 12, 24, 36, and 48 hr were respectively 12.5  7.2, 27.7  19.1, 46.0 ± ±

 23.4, and 65.6  41.3 ( 104 a.u.). The intracellular lipid amount was close to saturation after 36 hr ± ± ×  

of incubation in TAP-N media, thus the histograms of 36 and 48 hr overlapped quite a bit, but the average 

BODIPY fluorescence intensity of the cells cultured for 48 hr was still 1.4 times higher than that for 36 hr. 

Based  on this result, these five samples were used as a model microalgal population having five different 

intracellular lipid levels, and were used to test and demonstrate the feasibility of the lateral DEP 

microfluidic platform for microalgae separation depending on the lipid content.

Figure S7. Flow cytometry analysis of lipid content of C. reinhardtii CC-406 cells cultured in TAP-N media 

for 12, 24, 36, and 48 hr. CC-406 cells with no lipid induction was used as a negative control.
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Figure S8. Growth comparison of 1st-mutant #5, 2nd-mutant #16, and wild-type CC-406 cultured in TAP 

media.  
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