Computational Inertial Microfluidics: A Review

Sajad Razavi Bazaz¹, Ali Mashhadian², Abbas Ehsani³, Suvash Saha¹, Timm Krüger⁴,

Majid Ebrahimi Warkiani^{1,5*}

¹School of Biomedical Engineering, University of Technology Sydney, Sydney, New South

Wales 2007, Australia

²Department of Mechanical Engineering, Sharif University, Tehran, Iran

³School of Mechanical Engineering, University of Tehran, Tehran, Iran

⁴School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh,

Edinburgh EH9 3FB, United Kingdom

⁵Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia

*Contact

Majid Ebrahimi Warkiani (majid.Warkiani@uts.edu.au)

School of Biomedical Engineering, University Technology Sydney, Sydney, New South Wales 2007, Australia

Computational Inertial Microfluidics Foundations	Analytically Confirmed	N.S Based Confirmed	LBM Confirmed
Inertial lift scales with $\rho U^2 a^4 / H^2$ for $a/H \ll 1$	0	FSPP	
Inertial lift scales with $\rho U^2 a^3/H$ near the channel center for finite-size particle		FSPP	
Inertial lift scales with $\rho U^2 a^6/H^4$ near the channel wall for finite-size particle		FSPP	
Different particle focusing patterns in rectangular channels	0	FSPP, DLM	0
Rigid elliptical particle motion in rectangular channels		IBM	0
Slight shift of focusing position toward the walls by increasing in Re	0	FSPP, DLM	0
Reverse streamlines created near a particle in confined flow	0	FSPP, IBM,	0
		DLM	
Reverse streamlines create repulsive particle-particle interaction	0		0
Trains of self-assemble particles due to particle interaction with both the walls and other particles			0
Inertial particle focusing in grooved channels			0
Inertial particle motion in channels with pillars			
Rigid spherical particle focusing in spiral channels with rectangular cross section		FSPP	
Particle motion in spiral channels with trapezoidal cross section			
Motion of rigid spherical particle in serpentine channel		FSPP	0
Motion of rigid spherical particle in cavity and contraction-expansion arrays microchannels			0
Motion of deformable or non-spherical particles in non-straight channels such as serpentine, spiral,			
expansion contraction, cavity			
Inertial motion of deformable particles in a channel with junction		ALE, DLM	0
Focusing positions of particles in non-rectangular straight channels		FSPP	
Rigid particle motion in Giesekus and Oldroyd-B fluids as a subset of viscoelastic fluids in rectangular channels		DLM, IBM, FSPP	
Migration of deformable particles in Giesekus and Oldroyd-B fluids in a duct		ALE, DLM	
Migration of non-spherical particle in viscoelastic fluids in confined shear flow			
Particles motion in non-Newtonian fluids in non-straight channel such as spiral, serpentine etc.			

Table S1. Inertial Microfluidic Foundations