1 Lab on a Chip

2 Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring

3 the concentration of ammonia and ethanol in sweat

4

Sung Bong Kim, Jahyun Koo, Jangryeol Yoon, Aurélie Hourlier-Fargette, Boram Lee, Seongbin
Jo, Shulin Chen, Jungil Choi, Yong Suk Oh, Sang Min Won, Alexander J. Aranyosi, Stephen P.
Lee, Jeffrey B. Model, Paul V. Braun, Chulhwan Park, Roozbeh Ghaffari, John A. Rogers

9 Supporting Information #1

Statistical Analysis: Response surface methodology (RSM) was used to investigate the behavior of enzymatic color development for sweat ammonia and alcohol assays. Central composite design (CCD) techniques yielded 28 runs of experimental design with variables such as enzyme loading, reaction temperature, pH, and chloride concentration. The results defined a second-order (quadratic) polynomial equation by regression of the experimental results (Table S1). The secondorder modeling equation can be written as following:

16
$$y = \beta_0 + \sum_{i} \beta_i X_i + \sum_{i} \beta_{ii} X_i^2 + \sum_{i} \beta_{ij} X_i X_j \quad \text{(Eq. S1)}$$

17 Here, y is the predicted response, X_i and Xj are the input variables, β_0 is the offset term, β_0 is the 18 *i*th linear coefficient, β_{ii} is the quadratic coefficient, and β_{ii} is the *ij*th interaction coefficient. 19 Statistical analysis relied on coding variables to normalize the relative numerical scales of the 20 various factors. The coded values were assigned using following equation:

21
$$x_i = \frac{(X_i - X_0)}{\Delta X}$$
 $(i = 1, 2, 3, ..., j)$ (Eq. S2)

Where x_i is the coded value of the variable X_i , X_0 is the independent variable of real value at the center point, and ΔX is the step change value. Table S5 shows the assignment of coded values of the experimental (real) values. Design Expert 7.0 (Stat-Ease, Inc., Minneapolis, MN), a statistical software package, enabled overall statistical studies of experimental design of CCD, linear regression, and analysis of variance (ANOVA).

27 *Results of RSM and statistics*: Central composite design, a robust RSM model, facilitates 28 experimental design of various significant factors (enzyme loading amount, temperature of 29 reaction, pH, and chloride concentration) to yield second-order polynomial equations by linear 30 regression of the resulting data (Design Expert 7.0). The linear regression results for ammonia (y_1) 31 and alcohol (y_2) using the experimental data (initial reaction rate) can be summarized in the 32 following equations;

33 $y_1 = 8.45 + 0.57X_1 + 1.18X_2 - 0.072X_3 - 0.30X_4 + 0.31X_1X_2 - 0.0028X_1X_3 - 0.19X_1X_4 - 0.028X_2X_3$ 34 $+ 0.058X_2X_4 + 0.12X_3X_4 - 0.63X_1^2 - 0.70X_2^2 - 0.82X_3^2 - 0.48X_4^2$ (Eq. S3)

35 $y_2 = 22.88 + 3.02X_1 + 3.07X_2 + 0.21X_3 - 0.96X_4 - 0.12X_1X_2 + 0.94X_1X_3 + 0.74X_1X_4 + 0.48X_2X_3 + 36 0.10X_2X_4 - 1.14X_3X_4 - 2.12X_1^2 - 3.10X_2^2 - 2.47X_3^2 - 1.03X_4^2$ (Eq. S4)

38 Supporting Information #2

Table S1 Fitting results of Lineweaver-Burk plot and the kinetics parameters

40 a. NH₃

		12	10	8	6	4
1/V _{max}	(Intercept)	1.592857	1.716812	1.838416	1.658628	1.62157
K _m /V _{max}	(Slope)	16.72805	18.14555	20.09868	23.12009	27.30026
R ²		0.999718	0.999981	0.999908	0.999304	0.99953
V_{max}	(mmol·L ⁻¹ ·min ⁻¹)	0.627803	0.582475	0.543946	0.602908	0.616686
K _m	(mmol·L ⁻¹)	10.50191	10.56933	10.93261	13.93929	16.8357

42 b. EtOH

		25	20	15	10	5
1/V _{max}	(Intercept)	0.885042	0.93228	0.905732	0.99461	0.583175
K _m /V _{max}	(Slope)	6.293456	7.57048	9.36009	11.64613	17.53888
R ²		0.99977	0.999348	0.997904	0.9981	0.976902
V _{max}	(mmol·L ⁻¹ ·min ⁻¹)	1.12989	1.072639	1.104079	1.005419	1.714752
K _m	(mmol·L ⁻¹)	7.110916	8.120391	10.33428	11.70925	30.07483

Run	Enzyme loading	Temp.	рН	CI	Initial Reaction	Enzyme loading	Temp.	рН	CI	Initial Reactior
	X ₁	X ₂	X ₃	X_4	Rate	X ₁	X ₂	X ₃	X_4	Rate
1	1	-1	1	-1	0.415	-1	1	1	1	1.400
2	0	0	0	-2	0.798	2	0	0	0	2.584
3	-1	1	1	1	0.620	0	0	0	-2	2.370
4	0	0	0	0	0.806	-1	-1	1	-1	0.944
5	0	0	2	0	0.519	-1	1	-1	1	1.365
6	1	-1	1	1	0.411	1	1	-1	1	1.666
7	0	0	-2	0	0.571	1	-1	-1	-1	0.698
8	1	1	-1	1	0.661	1	1	1	1	1.658
9	0	0	0	2	0.565	1	1	1	-1	2.351
10	-1	1	1	-1	0.587	0	0	0	0	2.115
11	-1	-1	-1	1	0.403	-1	1	1	-1	1.410
12	0	0	0	0	0.941	0	0	0	2	1.805
13	-1	1	-1	1	0.698	0	2	0	0	2.001
14	-1	-1	1	1	0.469	-1	-1	-1	1	0.494
15	-1	-1	1	-1	0.485	-1	1	-1	-1	1.335
16	-1	1	-1	-1	0.633	-2	0	0	0	0.715
17	0	2	0	0	0.814	1	1	-1	-1	1.501
18	1	-1	-1	-1	0.514	1	-1	1	-1	1.574
19	1	1	1	-1	0.786	1	-1	-1	1	1.598
20	0	-2	0	0	0.368	0	0	0	0	2.468
21	-1	-1	-1	-1	0.461	0	0	0	0	2.290
22	0	0	0	0	0.837	0	0	-2	0	1.668
23	2	0	0	0	0.869	0	-2	0	0	0.514
24	1	-1	-1	1	0.415	-1	-1	-1	-1	1.265
25	-2	0	0	0	0.368	-1	-1	1	1	0.515
26	1	1	-1	-1	0.794	0	0	0	0	2.278
27	1	1	1	1	0.735	0	0	2	0	1.351
28	0	0	0	0	0.794	1	-1	1	1	1.200

Table S2 Experimental design of CCD and results.

49 Table S3 Coded values for RSM.

Factors	(Unit)	Symbol		-2	-1	0	1	2
Enzyme loading	(%)	X1	$\rm NH_3$	4	8	12	16	20
	(mg/mL)		EtOH	10	20	30	40	60
Temperature	(°C)	X2		20	25	30	35	40
рН		X3		5	6	7	8	9
Chloride	(mM)	X4		10	40	70	100	130

Table S4 Fitting results

53 a. NH₃

Source	Sum of Squares	DF	Mean Square	F-Value	Prob > F
Mean vs Total	6648.46	1	6648.46		
Linear vs Mean	468.6802	4	117.1701	4.763589	0.0060
2FI vs Linear	47.98079	6	7.996799	0.26257	0.9469
Quadratic vs 2FI	333.1909	4	83.29772	5.86732	0.0063
Cubic vs Quadratic	121.4259	8	15.17823	1.20207	0.4385
Residual	63.13374	5	12.62675		
Total	7682.871	28	274.3883		

55 b. EtOH

Source	Sum of Squares	DF	Mean Square	F-Value	Prob > F	
Mean vs Total	1075.241	1	1075.241			
Linear vs Mean	43.74645	4	10.93661	6.542068	0.0011	
2FI vs Linear	2.454738	6	0.409123	0.193223	0.9744	
Quadratic vs 2FI	25.6222	4	6.40555	8.027783	0.0017	
Cubic vs Quadratic	8.101563	8	1.012695	2.2292	0.1963	
Residual	2.271433	5	0.454287			
Total	1157.438	28	41.33707			

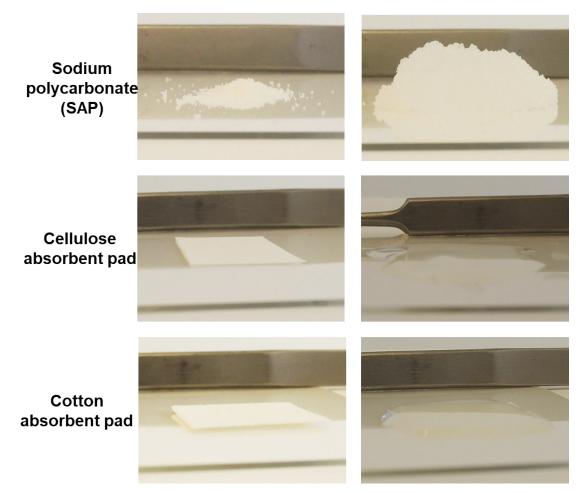
57 Table S5 ANOVA

58 a. NH₃

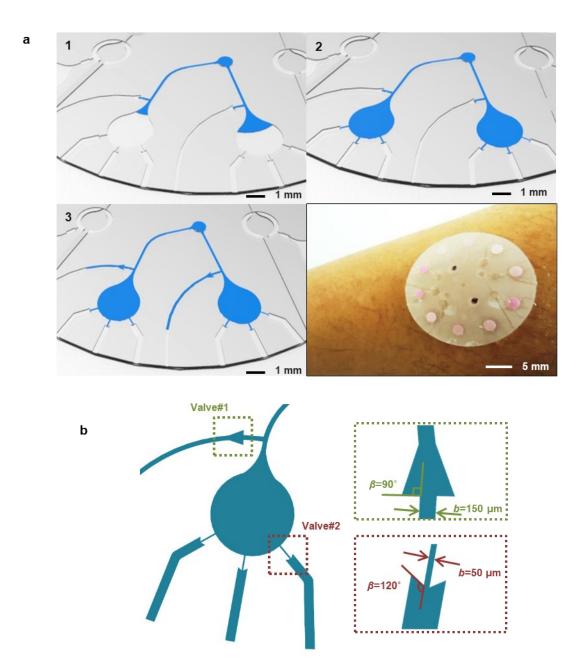
Course	Sum of	DE	Mean		Durch : F	
Source	Squares	DF	Square	F-value	Prob > F	
Model	71.82339	14	5.130242	6.429497	0.0009	
X 1	7.914314	1	7.914314	9.918647	0.0077	
X ₂	33.48371	1	33.48371	41.9636	< 0.0001	
X ₃	0.125571	1	0.125571	0.157372	0.6980	
X4	2.222851	1	2.222851	2.785797	0.1190	
X_1X_2	1.567504	1	1.567504	1.964481	0.1845	
X ₁ X ₃	0.000132	1	0.000132	0.000166	0.9899	
X_1X_4	0.604506	1	0.604506	0.7576	0.3999	
X_2X_3	0.012544	1	0.012544	0.015721	0.9021	
X_2X_4	0.053361	1	0.053361	0.066875	0.8000	
X_3X_4	0.21669	1	0.21669	0.271568	0.6110	
X ₁ ²	9.620334	1	9.620334	12.05672	0.0041	
X ₂ ²	11.82308	1	11.82308	14.81733	0.0020	
X ₃ ²	16.00993	1	16.00993	20.06452	0.0006	
X ₄ ²	5.437824	1	5.437824	6.814976	0.0216	
Residual	10.373	13	0.797923			
Lack of Fit	9.027528	10	0.902753	2.012877	0.3073	
Pure Error	1.345467	3	0.448489			
Cor Total	82.19638	27				

59 Std. Dev.: 0.89, R-square: 0.8738 and CV: 14.41%

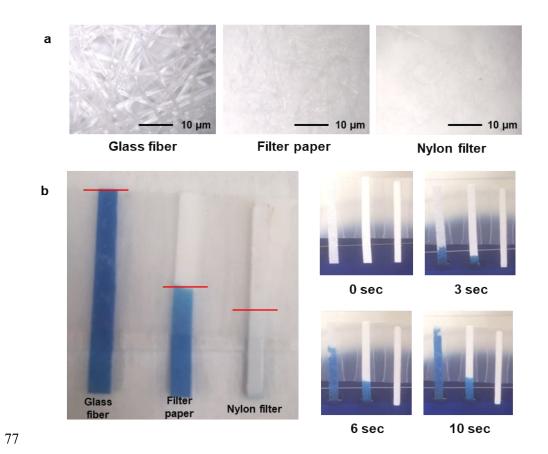
60 b. EtOH

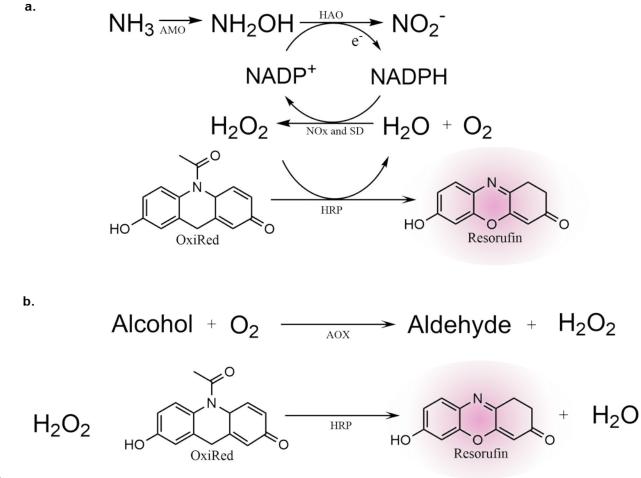

Course	Sum of	DF	Mean	E velve	Duck > F	
Source	Squares	DF	Square	F-value	Prob > F	
Model	849.85	14	60.704	4.2758	0.0064	
X ₁	219.14	1	219.14	15.436	0.0017	
X ₂	226.25	1	226.25	15.937	0.0015	
X ₃	1.0313	1	1.0313	0.0726	0.7918	
X ₄	22.259	1	22.259	1.5679	0.2326	
X_1X_2	0.2179	1	0.2179	0.0153	0.9033	
X_1X_3	14.237	1	14.237	1.0029	0.3349	
X_1X_4	8.6804	1	8.6804	0.6114	0.4483	
X_2X_3	3.7452	1	3.7452	0.2638	0.6161	
X_2X_4	0.1716	1	0.1716	0.0121	0.9141	
X_3X_4	20.928	1	20.928	1.4741	0.2463	
X 1 ²	107.92	1	107.92	7.6019	0.0163	
X_2^2	230.76	1	230.76	16.254	0.0014	
X_3^2	146.56	1	146.56	10.324	0.0068	
X ₄ ²	25.274	1	25.274	1.7802	0.2050	
Residual	184.56	13	14.197			
Lack of Fit	178.32	10	17.832	8.5685	0.0517	
Pure Error	6.2432	3	2.0811			
Cor Total	1034.4	27				

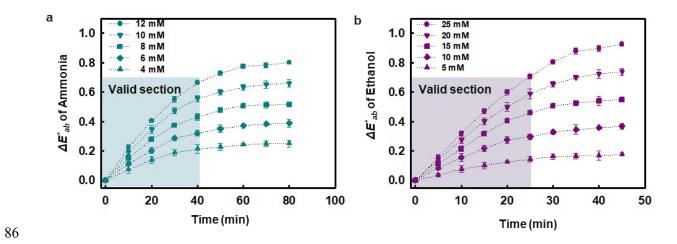
61 Std. Dev.: 3.77, R-square: 0.8216 and CV: 24.45%

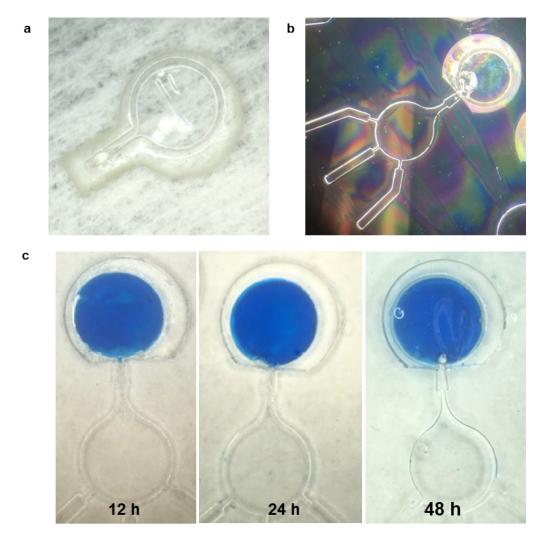

63	Table S6 Results of RSM optimization

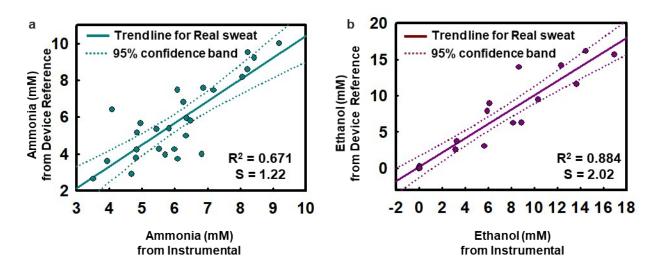
Factors	unit	Symbol		Coded	Real
Enzyme loading	(%)	X1	NH_3	0.64	14.56
Enzyme loaung	(mg/mL)	~ 1	EtOH	-0.73	22.7
Temperature	(°C)	X2	NH_3	0.5	32.5
remperature	(0)	~2	EtOH	0.6	33
pН		X3	NH_3	0.68	7.68
рп		ΛJ	EtOH	-0.2	6.8
Chloride	(mM)	X4	NH_3	-0.44	56.8
Chionae	(11111)	~4	EtOH	0.014	70.42


66 Supporting Information #3

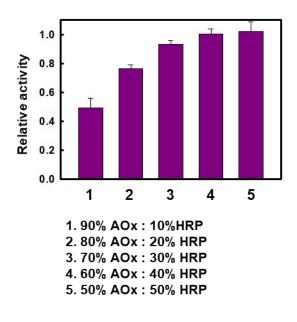

- 68 Fig. S1 Super Absorbent Polymer swelling and comparison tests with other absorbent pad
- 69 of cellulose and cotton. The tests involve same mass of absorbing agent (0.15 g; sodium
- 70 polycarbonate, cellulose paper, cotton sheet) and dropping 2 mL of distilled water on it.


- 72 Fig. S2 Schematic drawing of a microfluidic device showing the sweat filling process via
- 73 capillary burst valves. (a) Cartoons show individual wells filling sequentially. The optical
- 74 image highlights the appearance of the wells after filling and after reactions are completed. (b)
- 75 Detailed designs and dimensions of the network of valves.


- 78 Fig. S3 Enzyme matrix tests. (a) Optical microscope images of glass fiber, filter paper, and
- 79 nylon filter. (b) Water wetting tests at different time intervals for glass fiber, filter paper, and
- 80 nylon filter.


- 83 Fig. S4 Reaction formulations for the colorimetric assays. (a) Ammonia oxidation reaction
- 84 and resorufin production. (b) Alcohol oxidation reaction and resorufin production.

87 Fig. S5 Color development as a function of time for (a) ammonia and (b) alcohol assays.



90 Fig. S6 Prevention of evaporation of pre-loaded reagents using plastic reservoirs. (a) Optical
91 image of the plastic reservoir for liquid reagent pre-loading. (b) Soft lithography of plastic
92 reservoirs. (c) Evaporation tests using pre-loaded reagents in a plastic reservoir monitored over 48
93 h time period with no significant evaporation effects.

96 Fig. S7 Comparisons of the results of colorimetric and instrumental assays. (a) Plot of
97 ammonia concentration for a series of human sweat samples that are determined after color
98 analysis and corresponding instrument assay (Liquid chromatography-mass spectrometry system;
99 Waters Synapt G2-Si ESI, MA, USA). (b) Plot of ethanol concentration evaluated in a similar
100 manner.

103 Fig. S8 Effect of AOx-HRP ratio of enzyme cocktail for alcohol assay.

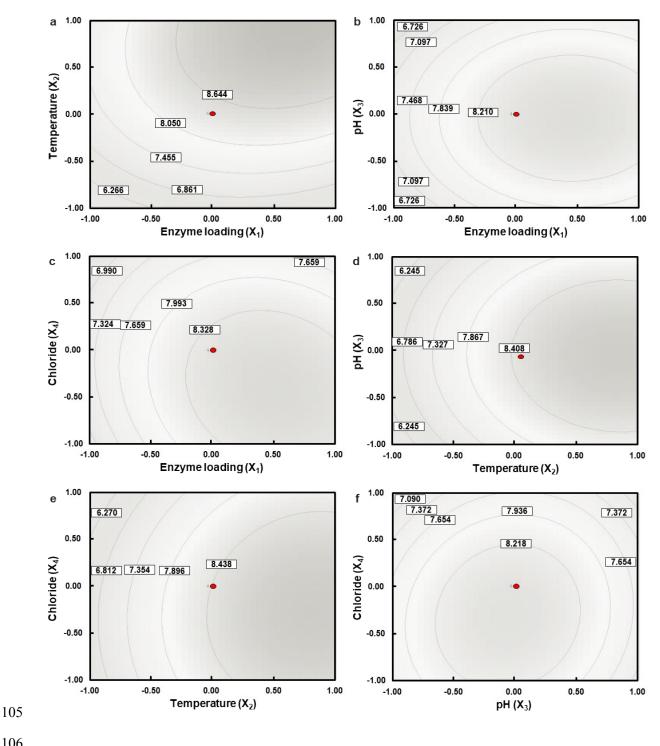
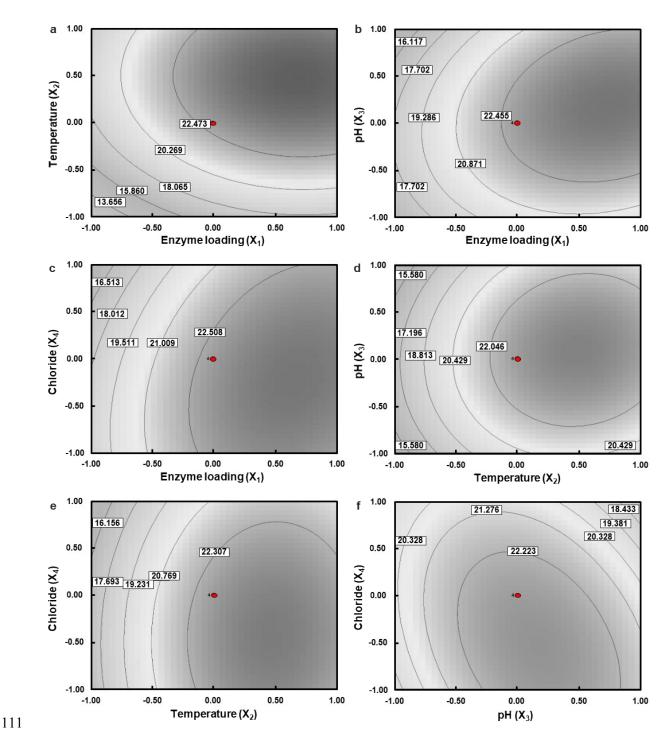
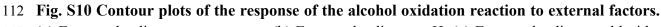
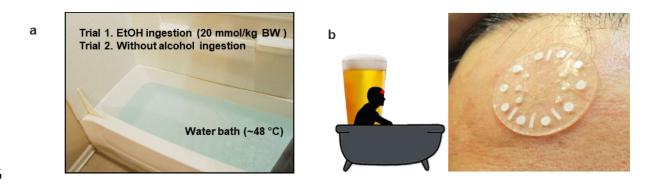
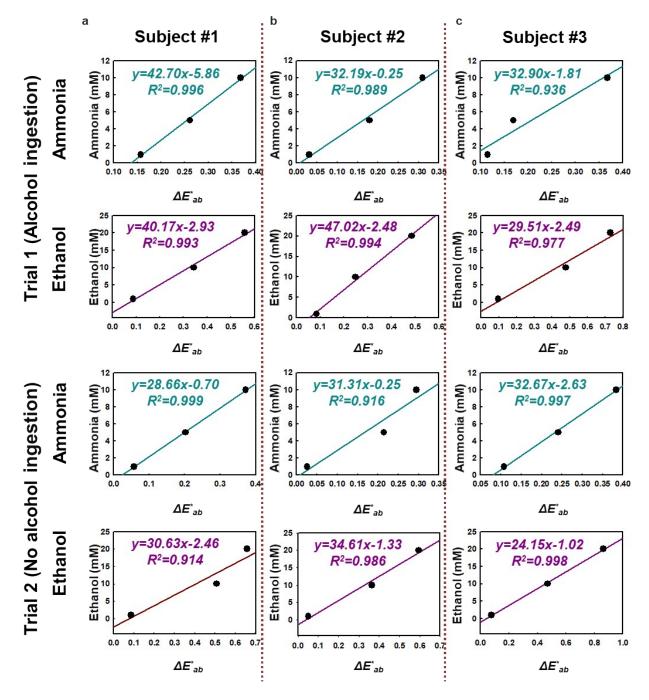




Fig. S9 Contour plots of the response of the ammonia oxidation reaction to external factors.

(a) Enzyme loading vs temperature. (b) Enzyme loading vs pH. (c) Enzyme loading vs chloride.


(d) Temperature vs pH. (e) Temperature vs chloride. (f) pH vs chloride.



113 (a) Enzyme loading vs temperature. (b) Enzyme loading vs pH. (c) Enzyme loading vs chloride.

114 (d) Temperature vs pH. (e) Temperature vs chloride. (f) pH vs chloride.

- Fig. S11 Field tests conditions with multiple healthy subjects. (a) Optical image of warm water
- bath prepared for human subjects. (b) Microfluidic device attached to the forehead region on subject.

124 Fig. S12 Calibration curves from reference reaction reservoirs on the devices in field tests

125 for subject #1 (a), subject #2 (b), and subject #3 (c).

128 Fig. S13 Reagent pre-loading method using 30 GA (300 μm Φ) needle.