Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Scalable microfluidic droplet on-demand generator for non-steady operation of droplet based assays

Kartik Totlani^a, Jan-Willem Hurkmans^a, Walter van Gulik^b, Michiel Kreutzer^a and Volkert van Steiin^a*

Supplementary files:

- 1. AutoCAD drawing of the devices used in the paper.
- 2. MATLAB script for running a DoD experiment with MFCS Fluigent pump

Supplementary movies:

- S1. Droplet on demand generation for variation of pulse strength reported in Fig. 2a.
- S2. Droplet on demand generation for variation of pulse duration reported in Fig. 2c.
- S3. Droplet on demand generation for partial wetting system reported in Fig. 4c.
- S4. Scale out to 64 parallel DoD generators reported in Fig. 6.

Pressure profiles for the viscosity variation experiments reported in Fig. 4a:

Glycerol (w/w%)	Viscosity @ 20°C (mPa.s) [1]	Pressure profile
0	1	p_d = 22 mbar; p_c = 30 mbar; $\Delta p_{d,form}$ = 15 mbar; $\Delta p_{c,form}$ = 3 mbar; Δt_{form} = 0.2 s; Δt_{pause} = 15 s; $\Delta p_{d,release}$ = 5 mbar; $\Delta p_{c,release}$ = 12 mbar; $\Delta t_{release}$ = 5 s; Δt_{cycle} = 8 s.
50	6	p_d = 47 mbar; p_c = 37 mbar; $\Delta p_{d,form}$ = 35 mbar; $\Delta p_{c,form}$ = 2.3 mbar; Δt_{form} = 0.3 s; Δt_{pause} = 15 s; $\Delta p_{d,release}$ = 5 mbar; $\Delta p_{c,release}$ = 12 mbar; $\Delta t_{release}$ = 5 s; Δt_{cycle} = 8 s.
80	60.1	p_d = 39 mbar; P_c = 38 mbar; $\Delta p_{d,form}$ = 110 mbar; $\Delta p_{c,form}$ = 3.7 mbar; Δt_{form} = 1 s; Δt_{pause} = 15 s; $\Delta p_{d,release}$ = 5 mbar; $\Delta p_{c,release}$ = 18 mbar; $\Delta t_{release}$ = 10 s; Δt_{cycle} = 8 s.
85	109	p_d = 54 mbar; P_c = 37 mbar; $\Delta p_{d,form}$ = 55 mbar; $\Delta p_{c,form}$ = 3 mbar; Δt_{form} = 5 s; Δt_{pause} = 15 s; $\Delta p_{d,release}$ = 5 mbar; $\Delta p_{c,release}$ = 18 mbar; $\Delta t_{release}$ = 10 s; Δt_{cycle} = 8 s.
90	219	p_d = 48 mbar; P_c = 37 mbar; $\Delta p_{d,form}$ = 60 mbar; $\Delta p_{c,form}$ = 1.8 mbar; Δt_{form} = 10 s; Δt_{pause} = 10 s; $\Delta p_{d,release}$ = 5 mbar; $\Delta p_{c,release}$ = 18 mbar; $\Delta t_{release}$ = 10 s; Δt_{cycle} = 8 s.

References:

[1] Segur, John Bartlett and Oberstar, Helen E, Viscosity of glycerol and its aqueous solutions, Industrial & Engineering Chemistry, 1951, 43, 9, 2117—2120.

^a Department of Chemical engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.

^b Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.