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Supporting information 1: Comparison of bacterial cellulose assays 

 

 Direct detection 

without labeling 

Long-term culture  High throughput 

Flow cytometry  × × ✔✔ 

Microwell  ✔ ✔ ✔ 

Microfluidics  ✔ ✔ ✔✔ 

 

Table S1: Comparison of assays to measure bacterial cellulose production. Flow cytometry is a high-throughput tool 
to screen bacteria in a continuous-flow setting. However, it is not easy to incubate bacteria for days to generate 
sufficient bacterial cellulose (BC) with internal structures for screening. Microwell technology is used to culture 
bacteria to produce sufficient BC for analysis but has limitations in high-throughput measurement. Here, the 
microfluidic approach was demonstrated to incubate single bacteria in agarose particles for days to produce BC for 
high-throughput measurement. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Supporting information 2: Bacteria encapsulation and proliferation 

To encapsulate single bacteria in droplets, a pinched microchannel was developed to regulate bacterial distribution 
along a microchannel [R. Ramji et al, Biomicrofluidics, 2014, 8, 034104]. The average droplet diameter generated 
was approximately 30 μm, and the bacterial concentration was adjusted to 5 × 107 bacteria/mL. If the encapsulation 
process followed the Poisson distribution, λ would be approximately 0.5, and the encapsulation rate would follow 
the dotted line, as shown in Fig. S1a. The experimental encapsulation rate of the improved microfluidic structure is 
shown with the bars. The single-bacterium encapsulation rate was significantly enhanced, while the number of empty 
droplets or droplets containing multiple cells decreased. Fig. S1b shows the proliferation of encapsulated bacteria in 
the agarose hydrogel particle during cell incubation. The number of bacteria in one hydrogel particle continuously 
increased from 1 to approximately 20 in 3 days (72 hours). 

Figure S1: Encapsulation and proliferation of bacteria in agarose hydrogel particles: (a) Comparison of the 
experimental count and the Poisson distribution (λ = 0.5) for the encapsulation rates of 0 to 5 bacteria per droplet; (b) 
bacteria number per droplet counted over 72 h showing the proliferation of bacteria under the agitated culture 
condition; scale bar: 10 μm. 

 

 

 

Reference: 

Single cell kinase signaling asay using pinched flow coupled droplet microfluidics. R. Ramji, M. Wang, A. A. S. 
Bhagat, D. S. W. Tan, N. V. Thakor, C. T. Lim and C. H. Chen, Biomicrofluidics, 2014, 8, 034104. 
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Supporting information 3: Applications based on bacterial cellulose types 

Based on the morphology of BC, we manually classified the secreted BC into five categories: I. small amount of 
cellulose; II. medium amount of BC with speckles; III. large amount of BC with speckles; IV. medium amount of 
BC agglomerates; and V. large amount of BC agglomerates. Based on previous research [A. Basu et al., Scientific 
Reports, 2018, 8, 5780, J. Wang et al., Carbohydrate Polymers, 2019, 210, 63], BC with different morphological 
properties will display different features and thus have varied applications. BC with a dense and compact morphology 
(category IV and V in our study) presents high mechanical strength and could be used to fabricate synthetic 
supporting materials and artificial blood vessels. On the other hand, BC with loose, porous and large surface areas 
(category II and III in our study) will have such advantages as high water-holding capacity and high transparency 
and are suitable for applications in wound dressings, membranes and scaffolds for tissue regeneration. In this study, 
the presented platform was used to rapidly identify the five defined classes of BC, which would be helpful to 
determine the bacteria that could produce suitable BC for desired applications. A description of the functions of the 
five defined categories is attached below in Table S2 (definitions of the five BC types and their applications). 

Table S2 Five categories classified based on BC morphology in agarose hydrogel particles 

Category I II III IV V 

Morphology 
type 

Small amount 
of BC 

Medium amount 
of 

BC speckles 

Large amount 
of BC speckles 

Medium amount 
of BC 
agglomerates 

Large amount of 
BC 
agglomerates 

Schematic 

     

Feature Very little BC 
in particle 

Loose, porous, large surface area; 
high water-holding capacity, high 
transparency   

Compact and smooth surface; high 
mechanical strength 

Applications N/A Wound dressings, membranes and 
scaffolds for tissue regeneration 

Synthetic supporting materials, 
artificial blood vessels  

Bacteria 
strain 

With low BC 
productivity 

K. rhaeticus 

G. xylinus 

G. hansenii 

G. xylinus 

 
References: 
A. Basu, S. V. Vadanan et al., “A Novel Platform for Evaluating the Environmental Impacts on Bacterial Cellulose 
Production”, Scientific Reports, 2018, 8, 5780. 
 
J. Wang, J. Tavakoli et al., “Bacterial cellulose production, properties and applications with different culture methods 
– a review.”, Carbohydrate Polymers, 2019, 210, 63. 
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Supporting information 4: Workflow to prepare the convolutional neural network database 

To prepare the data for convolutional neural network (CNN) analysis, a schematic to introduce data preparation is 
shown in Figure S2. In the first step, the five categories were manually labeled based on morphologies of bacterial 
cellulose (BC) in an agarose hydrogel particle, which are illustrated on page 3 as follows: I. small amount of BC; II. 
medium amount of BC speckles; III. large amount of BC speckles; IV. medium amount of BC agglomerates; and V. 
large amount of BC agglomerates. 

The second step was to construct a database of five categories. The scattering images and their corresponding 
brightfield images were recorded together in the static state, as shown in Figure 3. The classes of cellulose were 
labeled manually based on brightfield images. For each category, 500 images were recorded to form an image 
database with 2,500 images in total. 

The third step was to establish a specialized CNN. The CNN was a classifier with an input of a monochromatic 
128×128 pixel scattering image and an output of five defined categories. CNN can conduct feature learning of a 
scattering image through a series of convolutional layers with rectified linear units (ReLU) and pooling processes. A 
total of 2,500 monochromatic 128×128 pixel scattering images (500 for each category) with BC morphologies were 
chosen randomly for algorithm training. The training process was accomplished when accuracy could not be further 
improved by the algorithm. 

The fourth step was the continuous screening process. In our platform, the aqueous flowrate was 10 µL/min (no 
oil flow). Approximately 100 particles passed through the sensing area of the CCD camera per second. The camera 
capture speed was 200 fps. The synchronization between flowrate and camera capture speed could be improved by 
further characterization, but although some particle images were missed due to asynchrony, the number of images 
collected was already sufficient for model build-up. In this study, with the capability of high-throughput screening, 
statistical information was effectively obtained for analysis. The optofluidic image pattern of empty agarose hydrogel 
particles was collected and labeled in our database and would not affect our reading outcome. 

 

Figure S2: Workflow to prepare the database for CNN analysis of BC production in agarose hydrogel particles. 

 

 

Step-1: Five categories defined

In the first step, we defined five categories: I. Small
amount of BC; II. BC speckles (medium amount); III.
BC speckles (large amount); IV. BC agglomerates
(medium amount); and V. BC agglomerates (large
amount).

In the second step, we manually recorded the
brightfield images and scattering images
simultaneously in static condition to establish a
database (2500 samples, 500 for each type).

Step-2: Database construction Step-3: Machine learning

In the third step, the CNN method was conducted
to evaluate the images for machine learning, which
would be used to rapidly identify the unknown
images

Step-4: Image analysis

In the fourth step, the accuracy of the CNN
method was evaluated.

In the fifth step, the scattering images were
recorded. The captured images were uploaded to a
computer. CNN was used to verify the captured
images.

In the sixth step, the hydrogel particles containing BC 
produced by three species (G. xylinus,  G. hansenil, K. 
rhaeticus) were analyzed.
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Supporting information 5: Convolutional neural network (CNN) training process 

A convolutional neural network (CNN) training process of the optofluidic images of single hydrogel particles for 
three categories (high, medium and small amounts of cellulose in the agarose hydrogel particles) was developed. The 
CNN approach was applied to obtain the results shown Figure 4c. Five hundred images were prepared in each 
category. To train the CNN algorithm, 500 epochs were processed. Each epoch contained 11 iterations. The readouts 
were validated every 30 iterations. After 18 epochs (198 iterations), the accuracy of the CNN model approached 
100% (Figure S3). 

 

 

 

Figure S3: Convolutional neural network (CNN) training process of the optofluidic images of single hydrogel 
particle analysis. 
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Supporting information 6: Convolutional neural network (CNN) code for data production 

Five steps were used to construct our convolutional neural network (CNN) algorithm: 1. Load the database, 2. Count 
the images for each label, 3. Set the number of each class for training, 4. Define the CNN architecture, and 5. Train 
the CNN. The complete CNN code with all parameters is provided here for data reproduction.  

 

1. Load the database 

digitDatasetPath = fullfile(matlabroot,'bin','database'); 

digitData = imageDatastore(digitDatasetPath,... 

    'IncludeSubfolders',true,'LabelSource','foldernames'); 

 

2. Count the images for each label  

(note: confirm all classes have 500 images, not a necessary step) 

labelCount = countEachLabel(digitData) 

 

3. Set the number of each class for training  

(note: 80% from database) 

trainNumFiles = 400;  

[trainDigitData,valDigitData] = splitEachLabel(digitData,trainNumFiles,'randomize'); 

 

4. Define the CNN architecture 

layers = [ 

    imageInputLayer([128 128 1])  (note: 128*128 is the size of image) 

convolution2dLayer(3,16,'Padding',1) 

(note: filter size is 3-by-3; the number of filters is 16;) 

batchNormalizationLayer  

(note: this layer is used to normalize the activations and gradients propagating through a network) 

    reluLayer     (note: this is a nonlinear activation function) 

maxPooling2dLayer(2,'Stride',2)  
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convolution2dLayer(3,32,'Padding',1) 

(note: reduces the spatial size of the feature map and removes redundant spatial information) 

    batchNormalizationLayer 

    reluLayer 

    maxPooling2dLayer(2,'Stride',2) 

    convolution2dLayer(3,64,'Padding',1) 

    batchNormalizationLayer 

    reluLayer 

fullyConnectedLayer(7) 

(note: this layer is used to combine the features for image classification) 

    softmaxLayer 

    classificationLayer]; 

 

5. Train the CNN 

options = trainingOptions('sgdm',... 

    'MaxEpochs',500, ...     (note: set training iteration) 

    'ValidationData',valDigitData,... 

    'ValidationFrequency',30,...    (note: set validation frequency to 30) 

    'Verbose',false,... 

    'ValidationPatience',30,... %could be inf 

    'Plots','training-progress'); 

net = trainNetwork(trainDigitData,layers,options); 
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Supporting information 7: Regression suggested to improve accuracy 

In this study, we did not use a regression strategy. The accuracy for identifying the class of BC was ~80%. It is 
expected that by including regression strategies, accuracy could be improved for a wide range of different 
applications (such as immune cell and cancer cell identification). L2 regularization (ridge regression) has been 
suggested to improve the accuracy of identifications. This strategy adds dropout layers and batch normalization layers 
and can be used to optimize our current model. To create a less complex (parsimonious) model, L2 regularization 
could be conducted to address the over-fitting issue by adding squared magnitude. In addition, more labeled images 
could be added to enlarge our training dataset to further improve the accuracy of identification. 
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Supporting information 8: Scanning electron microscopy (SEM) images 

Scanning electron microscopy (SEM) images of the cellulose structures were obtained using an FEI Quanta 200 
scanning electron microscope (Holland Philips Co.). The single-cell morphology and BC produced by 
Gluconacetobacter xylinus, Gluconacetobacter hansenii and Komagataeibacter rhaeticus in bulk conditions are 
shown in Figure S4. 

 

 

 

Figure S4: Scanning electron microscopy (SEM) photos of Gluconacetobacter xylinus (700178), Gluconacetobacter 
hansenii (53582) and Komagataeibacter rhaeticus (iGEM) and the cellulose they produced after 7 days of static 
culture. 

 
 
 
 
 
 
 
 
 
 


