## A "Sample-in- multiplex-digital-answer-out" chip for fast detection of pathogens

Juxin Yin<sup>abc</sup>, Zheyu Zou<sup>ad</sup>, Zhenming Hu<sup>a</sup>, Shan Zhang<sup>ad</sup>, Fengping Zhang<sup>e</sup>, Ben Wang<sup>bc</sup>, Shaowu Lv<sup>f</sup><sup>%</sup>, Ying Mu<sup>a</sup><sup>%</sup>

- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P. R. China.
- b. Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
- c. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China;
- d. College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
- e. HeZe Municipal hospital, HeZe 274000, China;
- f. Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China;

\*Corresponding author: muying@zju.edu.cn

lvsw@jlu.edu.cn



## В



## Figure S1 Design of the integrated microfluidic chip.

A Schematic diagram of the chip's planar structure. 1, 2, 3 represent the position of the 3 screws. One of the detection areas (blue) was used as a negative control and the other three areas (red) were the detection areas of the three food-borne pathogens.

B: Photograph of integrated multi-detection chip

| Bacterial Strain             | Forward Primer | Reverse Primer    | Probe                          |
|------------------------------|----------------|-------------------|--------------------------------|
| Escherichia coli             | GTTAACTTTA     | GAAATATACTTATAACG | CCTTCAGAGTAGCGCCAAGATCTG       |
| O157:H7 <sup>[1]</sup>       | CCATTTGCAA     | CATCGACCAATGATT   | TCG-T(FAM)-TG-dSpacer-AGT(BHQ- |
|                              | AGGTATATGT     |                   | 1)-GCCTGTCGCTAC                |
|                              | AC             |                   |                                |
|                              |                |                   |                                |
| Listeria                     | CGCCTGCAAG     | CTGCATCTCCGTGGTAT | CGAAAAGAAACACGCGGATGAAA        |
| monocytogenes <sup>[2]</sup> | TCCTAAGACG     | ACTAATACATTGTTTTT | TCGATAAG[FAM][THF][BHQ-        |
|                              | CCAATCGAAA     | А                 | 1]ATACAA GGATTGGA              |
|                              | AGAAAC         |                   |                                |
|                              |                |                   |                                |
| Salmonella                   | CGTCTACGTA     | CATCAAATCAAAATAG  | GCGATGGCGAGGGCCTGGACGAT        |
| enterica <sup>[1]</sup>      | GTCAGTTCTT     | ACCGTAAATTGTTC    | AACAGCA-T(FAM)-CGAT-T(BHQ-     |
|                              | TATTGATTAT     |                   | 1)-TTGATTAATGAGAT              |
|                              |                |                   |                                |

Table S1 The Primer and probe sequence using in this manuscript



**Figure S2 Height uniformity and fluorescence intensity uniformity analysis of the integrated multiplex digital RPA chip.** A: The uniformity of the height of the same column. B: Uniformity of heights of different columns. C: Surface roughness of the chip. D: uniformity of brightness



Figure S3 The feasibility of off-chip RPA reaction and the reliability of freeze-dried components

A: Off-chip reaction, showing that the primers and probes used can be used for RPA reactions.

Line I :Fluorescent picture inside the tube before reaction. Line II :Fluorescent picture inside the tube after reaction (1):E. coli O157:H7;(2):S. *enterica*;(3):Control group; (4):L. *monocytogenes*. B: The state of the chip before and after lyophilization. Microscope picture of the microwells before lyophilization. Microscope picture of the chamber after lyophilization. Powdered ingredients can be observed. (c) A picture of the RPA reaction using a chip embedding the reaction component, indicating that all the chambers can perform the RPA reaction normally



**Figure S4 The real-time fluorescence curve of RPA reaction.** The fluorescence signal was collected by ABI7900, and the results showed that the detection of gene copy number below 10 copies could not be accurately detected by real-time fluorescence quantitative method.

## References

[1] Choi G, Jung J H, Park B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on a Chip, 2016, 16(12): 2309-2316.

[2]Li Z, Liu Y, Wei Q, et al. Picoliter well array chip-based digital recombinase polymerase amplification for absolute quantification of nucleic acids[J]. PLoS One, 2016, 11(4): e0153359.