Table 9	S1.	Volatiles	identified	in the	houai	let from	Daldinia	clutidae	MUCI	53761
I able	51.	VUIatilies	luentineu		bouqu		Daiuiilia	ciuliuae	NOOL	JJ701.

Compound	1	/ (Lit.)	Identification ^a	Peak area ^b
4-Methylhexan-3-one (6)	846	842 [1]	ms, ri	1.9%
Cyclohexanol (10)	887	886 [2]	ms, ri, std	<0.1%
Cyclohexanone (11)	899	895 [2]	ms, ri, std	<0.1%
2,5-Dimethylpyrazine (14)	915	912 [3]	ms, ri, std	<0.1%
2-Acetylfuran (12)	916	911 [4]	ms, ri, std	<0.1%
Oct-1-en-3-ol (9)	982	974 [5]	ms, ri, std	0.2%
2,4,6-Trimethylpyridine (15)	992	993 [6]	ms, ri	<0.1%
2-Acetylthiazole (13)	1019	1014 [5]	ms, ri, std	0.8%
1-Phenylethanol (16)	1062	1057 [5]	ms, ri, std	<0.1%
Acetophenone (17)	1066	1059 [5]	ms, ri, std	<0.1%
<i>cis</i> -Linalool oxide (32)	1074	1067 [5]	ms, ri	0.2%
trans-Linalool oxide (33)	1089	1084 [5]	ms, ri	0.3%
2-Phenylethanol (18)	1113	1106 [5]	ms, ri, std	<0.1%
Manicone (7)	1139	1136 [7]	ms, ri, std	<0.1%
Methyl salicylate (19)	1194	1190 [8]	ms, ri, std	<0.1%
(4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-5-Hydroxy-4,6-	1231	1228 [7]	ms, ri, std	0.5%
dimethyloctan-3-one (8)				
2-Methyl-4-chromanone (21)	1369	1366 [7]	ms, ri	<0.1%
Methyl 2,6-dihydroxybenzoate (20)	1388	1385 [8]	ms, ri	<0.1%
2-Nonylfuran (25)	1394		syn	1.9%
unknown furan (X)	1400		syn	<0.1%
Geosmin (29)	1403	1399 [5]	ms, ri, std	<0.1%

5-Hydroxy-2-methyl-4-chromanone	1473		ms, std [9]	43.5%
(22)				
<i>trans</i> -β-Bergamotene (31)	1490	1480 [10]	ms, ri	0.3%
β-Bisabolene (30)	1510	1505 [10]	ms, ri	0.1%
5-Hydroxy-2-methyl-4 <i>H</i> -chromen-4-	1591	1591 [11]	ms, ri, std	0.2%
one (23)				
2-Undecylfuran (26)	1597		syn	0.1%
unknown furan (Y)	1604		syn	0.1%
1,8-Dimethoxynaphthalene (24)	1659	1657 [11]	ms, ri	22.0%
6-Heptyl-2 <i>H</i> -pyran-2-one (27)	1672	1677 [12]	ms, ri, std	0.1%
6-Nonyl-2 <i>H</i> -pyran-2-one (28)	1878	1875 [7]	ms, ri, std	2.7%

^aCompound identification was based on ms: identical mass spectrum, ri: identical retention index, std: comparison to an authentic standard (isolated from liquid culture extracts, from a commercial supplier, or synthesised in our previous work), syn: comparison to an authentic standard synthesised in this study. ^bPeak area in % of total peak area. The sum of peak areas is <100%, because unidentified compounds, medium compounds and contaminants (e. g. plasticisers) are not listed.

Figure S1. ¹H-NMR spectrum (700 MHz, C_6D_6) of 22 isolated from liquid culture

extracts.

extracts.

Figure S3. ¹³C-DEPT spectrum (175 MHz, C_6D_6) of 22 isolated from liquid culture

extracts.

Figure S4. GC analysis of isolated **22** on a chiral stationary phase. Peak integration demonstrates that natural **22** from *Daldinia* cf. *childiae* is racemic.

Figure S5. A) Mass spectrum of labelled **22** obtained in the feeding experiment with sodium $(1,2^{-13}C_2)$ acetate showing the incorporation of up two five labelled C_2 units. B) Extracted ion chromatograms for non-labelled **22** (m/z = 178) and labelled **22** with one (m/z = 180), two (m/z = 182), three (m/z = 184), four (m/z = 186) and five (m/z = 188) incorporated ($1,2^{-13}C_2$) acetate units. The incorporation rate (14%) was determined from the peak integrals of these extracted ion chromatograms weighted by the number of labelled and unlabelled units they represent.

Figure S6. ¹H-NMR spectrum (700 MHz, C_6D_6) of 35.

Figure S7. ¹³C-NMR spectrum (175 MHz, C_6D_6) of 35.

Figure S8. ¹³C-DEPT spectrum (175 MHz, C_6D_6) of 35.

Scheme S1. Alternative biosynthetic pathway to **22** and related natural products (excluded by the feeding experiment with sodium (1,2-¹³C₂)acetate). This pathway would use salicylic acid (**S1a**) and 2,6-dihydroxybenzoic acid (**S1b**) as starter units. The corresponding methyl esters **19** and **20** are observed as trace compounds in the headspace extracts from *Daldinia clutidae* and could arise by *S*-adenosylmethionine (SAM) dependent methylation of **S1a** and **S1b** by a methyltransferase (MT). Instead of being biosynthetic starter units these benzoic acid derivatives may arise by degradation of the polyketides **21** and **22**. ACP: acyl carrier protein, KS: ketosynthase, mal-SCoA: malonyl-coenzyme A thioester.

Figure S9. ¹H-NMR spectrum (400 MHz, CDCl₃) of 25.

Figure S10. ¹³C-NMR spectrum (100 MHz, CDCl₃) of 25.

Figure S11. ¹³C-DEPT spectrum (100 MHz, CDCl₃) of 25.

Figure S12. ¹H-NMR spectrum (500 MHz, CDCl₃) of 26.

Figure S13. ¹³C-NMR spectrum (125 MHz, CDCl₃) of 26.

Figure S14. ¹³C-DEPT spectrum (125 MHz, CDCl₃) of 26.

Figure S15. Synthetic candidate compounds that were considered for the alkenylfurans **X** and **Y**. El mass spectra and retention indices of A) (*Z*)-2-(non-3-en-1-yl)furan (**41**), B) (*Z*)-2-(non-1-en-1-yl)furan (**45**) and C) (*Z*)-2-(undec-1-en-1-yl)furan (**46**). The mass spectra of (*E*)-**45** (*I* = 1466) and (*E*)-**46** (*I* = 1671) were very similar to those shown for the corresponding (*Z*)-isomers.

Figure S16. ¹H-NMR spectrum (500 MHz, CDCl₃) of 41.

Figure S17. ¹³C-NMR spectrum (125 MHz, CDCl₃) of 41.

Figure S18. ¹³C-DEPT spectrum (125 MHz, CDCl₃) of 41.

Figure S19. ¹H-NMR spectrum (700 MHz, CDCl₃) of 45.

Figure S20. ¹³C-NMR spectrum (175 MHz, CDCl₃) of 45.

Figure S21. ¹³C-DEPT spectrum (175 MHz, CDCl₃) of 45.

Figure S22. ¹H-NMR spectrum (700 MHz, CDCl₃) of 46.

Figure S23. ¹³C-NMR spectrum (175 MHz, CDCl₃) of 46.

Figure S24. ¹³C-DEPT spectrum (175 MHz, CDCl₃) of 46.

References

- [1] Y. Liu, X. Xu and G. Zhou, Int. J. Food Sci. Technol., 2007, 42, 543-550.
- [2] J. A. Pino, J. Mesa, Y. Munoz, M. P. Marti and R. Marbot, J. Agric. Food Chem., 2005, 53, 2213-2223.
- [3] J. S. Dickschat, S. Wickel, C. J. Bolten, T. Nawrath, S. Schulz and C. Wittmann, *Eur. J. Org. Chem.*, 2010, 2687-2695.
- [4] C. A. Citron, P. Rabe and J. S. Dickschat, J. Nat. Prod., 2012, 75, 1765-1776.
- [5] R. P. Adams, Identification of Essential Oil Components by Gas
 Chromatography/Mass Spectrometry, Allured, Carol Stream, 2009.
- [6] J. E. Premecz and M. E. Ford, *J. Chromatogr.*, 1987, **388**, 23-35.
- [7] T. Wang, K. I. Mohr, M. Stadler and J. S. Dickschat, *Beilstein J. Org. Chem.*, 2018, **14**, 135-147.
- [8] C. A. Citron, L. Barra, J. Wink, J. S. Dickschat, Org. Biomol. Chem., 2015, 13, 2673-2683.
- [9] L. E. Gray, H. W. Gardner, D. Weisleder and M. Leib, *Phytochemistry*, 1999,
 50, 1337-1340.
- [10] D. Joulain and W. A. König, *The Atlas of Spectral Data of Sesquiterpene Hydrocarbons*, E. B.-Verlag, Hamburg, 1998.
- [11] J. S. Dickschat, T. Wang and M. Stadler, *Beilstein J. Org. Chem.*, 2018, **14**, 734-746.
- [12] S. M. Wickel, C. A. Citron, J. S. Dickschat, *Eur. J. Org. Chem.*, 2013, 2906-2913.