Antibiofilm Activity of Quinazoline Derivatives against Mycobacterium smegmatis

Authors: Karlie E. Cox ${ }^{\text {a }}$ and Christian Melander ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of Notre Dame, 236 Cavanaugh Dr., Notre Dame, Indiana 46556, United States

*Correspondence: Christian Melander, cmelande@nd.edu

Table of contents:

Biological assay protocols and dataS2

Chemistry experimental and characterization ... 4
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance Spectra .. S13

Biological assay protocols and data

Biofilm inhibition assay. M. smegmatis was grown in 7 H 9 (ADC, 0.5% Tween 80) for 48 h and this culture was used to inoculate Difco M9 minimal salts media (OD600 $=0.01$) supplemented with glucose (20% Sigma-Aldrich, 2 mL per 100 mL), $\mathrm{MgSO}_{4}(1 \mathrm{M}, 200 \mu \mathrm{~L}$ per 100 mL), and $\mathrm{CaCl}_{2}(1 \mathrm{M}, 10 \mu \mathrm{~L}$ per 100 mL$) .100 \mu \mathrm{~L}$ per well of the subculture was aliquoted into the center two columns of a 96-well PVC microtiter plate. Columns 1 and 12 served as negative control wells. Then compound from DMSO stock solutions was added to aliquots of the subculture to give the desired concentration to be tested and aliquoted ($100 \mu \mathrm{~L}$ per well) into the remaining wells of the 96-well PVC microtiter plate. Sample plates were then wrapped in GLAD Press n'Seal and were incubated under stationary conditions for 48 h at $37^{\circ} \mathrm{C}$. After incubation, the media was discarded, and the plates were washed thoroughly with water. The wells were stained with $110 \mu \mathrm{~L}$ of a 0.1% solution of crystal violet and then left at ambient temperature for 30 min . Crystal violet solution was discarded and plates washed thoroughly with water. $200 \mu \mathrm{~L}$ of 95% ethanol was added to each well, and the plates left covered at ambient temperature for $10 \mathrm{~min} .125 \mu \mathrm{~L}$ of the ethanol solution was transferred to a polystyrene microtiter plate. Biofilm inhibition was quantified by measuring the OD_{540} of each well. The values obtained from the two negative control lanes were subtracted from the OD_{540} of the other columns.

Hemolysis Assay. Was performed on mechanically difibrinated sheep blood (Hemostat Laboratories: DSB100). Difibrinated blood (1.5 mL) was placed into an Eppendorf tube and centrifuged for 10 min at $10,000 \mathrm{rpm}$. The supernatant was removed and then the cells were resuspended in 1 mL of phosphate-buffered saline (PBS). The suspension was centrifuged as before, the supernatant removed, and the cells were resuspended two more times. The final cell suspension was diluted 10 -fold. Compound was added from a DMSO stock solution to aliquots of the 10 -fold suspension dilution of blood to give the desired concentrations to be tested. Triton X (1%) was used as a positive control (100% lysis). PBS was used as a negative control (zero hemolysis). Samples were placed in an incubator at $37^{\circ} \mathrm{C}$ with shaking at 200 rpm for 1 h . After 1 h , the samples were centrifuged for 10 min at $10,000 \mathrm{rpm}$. The resulting supernatant was diluted by a factor of 40 in distilled water. The absorbance of the supernatant was then measured with a UV spectrometer at 540 nm .

Time kill curves. M. smegmatis was grown in 7 H 9 (ADC, 0.5% Tween80) for 48 h , and this culture was used to inoculate Difco M9 minimal salts media (OD600=0.01). Aliquots (3 mL) were placed in culture tubes and dosed with compound from stock solutions in DMSO. Untreated inoculated media served as the control. Tubes were incubated at $37^{\circ} \mathrm{C}$ with shaking. Samples were taken at $4,8,24$, and 48 h time points, serially diluted in fresh M9, and plated on 7 H 10 plates. Plates were incubated at $37^{\circ} \mathrm{C}$ for 48 h , and the number of colonies were counted.

Bacterial strains. The Mycobacterium smegmatis strain (ATCC 700084, $\mathrm{mc}_{2} 155$) was obtained from ATCC (Manassas, VA). Stock cultures were stored in glycerol stock media ($25 \% \mathrm{v} / \mathrm{v}$ glycerol and 7 H 9 , ADC, Tween 80) and maintained at $-80^{\circ} \mathrm{C}$. The strain was maintained and cultured in

7H9 or on 7H10 agar (OADC, glycerol) until utilized in the assays outlined above. All assays were run in duplicate and repeated at least two separate times. All compounds were dissolved as their HCl salts in molecular biology grade DMSO as 10 or 100 mM stock solutions and stored at -20 ${ }^{\circ} \mathrm{C}$.

Figure S1. Time kill curve for compounds $\mathbf{4 1}$ and $\mathbf{4 q}$ against M. smegmatis. Both compounds were tested at $60 \mu \mathrm{M}$.

Chemistry experimental and characterization

General remarks. All reagents used for chemical synthesis were purchased from commercially available sources without further purification. Flash chromatography was performed using $60 \AA$ mesh standard grade silica gel from Sorbetch. NMR solvents were obtained from Cambridge Isotope Labs and used as is. All ${ }^{1} \mathrm{H}$ NMR (300 or 500 MHz) were recorded at $25^{\circ} \mathrm{C}$ on Varian Mercury spectrometers or a (700 MHz) Bruker Avance spectrometer. All ${ }^{13} \mathrm{C}$ NMR (101, 126, or 151 MHz) spectra were recorded at $25^{\circ} \mathrm{C}$ on Varian Mercury spectrometers or a (175 MHz) Bruker Avance spectrometer. Chemical shifts (δ) are given in parts per million (ppm) relative to the respective NMR solvent; coupling constants (J) are in hertz (Hz). Abbreviations used are s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; p, pentet; h, hextet; m, multiplet. All highresolution mass spectrometry measurements were made in the Molecular Education, Technology, and Research Innovation Center (METRIC) at NC State University. Infrared spectra were obtained on a FT/IR-4100 spectrophotometer (vmax in cm^{-1}). UV absorbance was recorded on a Genesys 10 scanning UV/visible spectrophotometer ($\lambda \max$ in nm).

Procedure for 2-amino-6-nitroquinazoline formation (2). Commercially available guanidine carbonate ($1 \mathrm{~g}, 8.28 \mathrm{mmol}, 1.4 \mathrm{eq}$) and 2-fluoro-5-nitrobenzaldehyde ($1 \mathrm{~g}, 5.91 \mathrm{mmol}, 1 \mathrm{eq}$) were dissolved in acetonitrile (100 mL) over molecular sieves. $\mathrm{K}_{2} \mathrm{CO}_{3}(1.14 \mathrm{~g}, 8.28 \mathrm{mmol}, 1.4 \mathrm{eq})$ was added and the reaction was heated to $72{ }^{\circ} \mathrm{C}$ for 16 h . The molecular sieves were removed, and the reaction mixture was concentrated and then dissolved in ethyl acetate. The mixture was filtered, then the filtrate was washed with sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL} \times 2)$ and brine $(20 \mathrm{~mL} \times 2)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by flash chromatography ($0.5-3 \% \mathrm{MeOH} / \mathrm{NH}_{3}: \mathrm{DCM}$). Following concentration, this afforded 2-amino-6-nitroquinazoline (2) as an orange solid. Yield 40% ($450 \mathrm{mg}, 2.37 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO) $\delta 165.31,162.92,155.64,141.21,127.91,126.17,126.12,117.94 \mathrm{ppm}$.; IR $v_{\max }\left(\mathrm{cm}^{-1}\right):$ 3455, 3313, 3081, 1649, 1618, 1471, 1384; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 310; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 191.0564$, found 191.0565 .

Procedure for 2,6-diaminoquinazoline formation (3). 2-amino-6-nitroquinazoline (1 g, 5.26 mmol , $1 \mathrm{eq}), \mathrm{Pd} / \mathrm{C}(0.06 \mathrm{~g}, 0.53 \mathrm{mmol}, 0.1 \mathrm{eq})$, and ethanol (20 mL) were combined over nitrogen gas. The reaction was put under hydrogen gas and allowed to stir at room temperature for 8 h . The reaction was filtered over celite and washed with ethyl acetate (20 mL x 2). The orange solid was isolated without further purification to yield, 2,6-diaminoquinazoline (3). Yield 93% ($780 \mathrm{mg}, 4.87$ $\mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 161.97, 161.16, 147.77, 146.12, 128.54, 127.71, $123.25,107.93 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3438,3425,3400,3300,3161,1617,1586$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 161.0822$, found 161.0825.

Amide containing derivatives (4a-x)

N-(2-aminoquinazolin- 6 -yl)acetamide (4a): Compound 3 ($87 \mathrm{mg}, 0.54 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in anhydrous THF (2 mL) under nitrogen gas and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{K}_{3} \mathrm{PO}_{4}(0.14 \mathrm{~g}, 0.68 \mathrm{mmol}, 1.25$ eq) was added and the reaction was stirred for 20 minutes. Acetyl chloride ($0.04 \mathrm{~mL}, 0.54 \mathrm{mmol}$, $1 \mathrm{eq})$ was then added dropwise and the reaction stirred for 10 h at room temperature. The reaction was quenched with water/ethyl acetate. The organic material was extracted with ethyl acetate (20 $\mathrm{mL} x 3$). The organic fractions were combined and dried over MgSO_{4} and then concentrated under reduced pressure. The residue was purified by flash chromatography $\left(0.5-3 \% \mathrm{MeOH} / \mathrm{NH}_{3}: \mathrm{DCM}\right)$ to afford compound $\mathbf{4 a}$ as a yellow solid. Yield 33% ($37 \mathrm{mg}, 0.18 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=9.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) $\delta 168.79$, $162.22,160.80,149.00,133.84,128.22,125.47,119.74,115.69,24.40 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3253$, 3063, 1659, 1505; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 286; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 203.0927$, found 203.0931.

The remaining amide derivatives ($\mathbf{4 b} \mathbf{-} \mathbf{x}$) followed the same general procedure outlined for the synthesis of $\mathbf{4 a}$ with substitution of the appropriate acid chloride:
N-(2-aminoquinazolin-6-yl)propanamide (4b): Propionyl chloride ($0.05 \mathrm{~mL}, 0.52 \mathrm{mmol}, 1$ eq). Afforded compound $\mathbf{4 b}$ as a yellow solid. Yield $46 \%(51 \mathrm{mg}, 0.24 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) $\delta 172.48,162.18,160.79,148.97,133.88,128.28,125.44$, $119.75,115.73,29.94,10.20 \mathrm{ppm}$; IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3250,3053,1660,1541 ;$ UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 290 ;$ HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 217.1084$, found 217.1087.
N-(2-aminoquinazolin-6-yl)butanamide (4c): Butanoyl chloride ($0.06 \mathrm{~mL}, 0.53 \mathrm{mmol}, 1$ eq). Afforded compound $\mathbf{4 c}$ as a light yellow solid. Yield $58 \%(71 \mathrm{mg}, 0.31 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 171.66,162.19,160.79,148.98,133.83$, 128.31, 125.43, 119.74, 115.79, 31.15, 19.09, 14.11 ppm ; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3233,3106,1653,1543$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 286; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 231.1240$, found 231.1245.
N-(2-aminoquinazolin- 6 - $y l$ l)pentanamide (4d): Pentanoyl chloride ($0.06 \mathrm{~mL}, 0.53 \mathrm{mmol}, 1$ eq). Afforded compound $\mathbf{4 d}$ as a yellow solid. Yield $61 \% ~(80 \mathrm{mg}, 0.33 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-$ $1.24(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 171.81,162.20$, $160.78,148.98,133.85,128.32,125.42,119.75,115.79,36.55,27.78,22.32,14.22 \mathrm{ppm}$; IR $v_{\max }$
$\left(\mathrm{cm}^{-1}\right): 3250,3083,1655,1509$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 245.1397$, found 245.1402.
N-(2-aminoquinazolin-6-yl)hexanamide (4e): Hexanoyl chloride ($0.17 \mathrm{~mL}, 1.25 \mathrm{mmol}$, 1eq). Afforded compound 4 e as a yellow solid. Yield $48 \%(156 \mathrm{mg}, 0.60 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}$, $4 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 172.41,169.74,155.09,137.12,135.57$, $130.55,118.77,117.93,117.19,36.76,31.72,25.53,22.55,14.42 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3208,3038$, 1662, 1539; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 292; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 259.1553$, found 259.1552.
N-(2-aminoquinazolin- 6 -yl) heptanamide (4f): Heptanoyl chloride ($0.11 \mathrm{~mL}, 0.69 \mathrm{mmol}, 1$ eq). Afforded compound $\mathbf{4 f}$ as a yellow solid. Yield $44 \%(83 \mathrm{mg}, 0.31 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d $_{6}$) $9.99(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27$ $-1.21(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{t}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 171.75, 162.17, 160.76, 148.94, 133.82, 128.24, 125.40, 119.71, 115.70, 36.80, 31.51, 28.81, 25.58, 22.46, 14.39 ppm ; IR $v_{\max }\left(\mathrm{cm}^{-1}\right)$: 3268 , $3105,1670,1515$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 273.1710$, found 273.1710.
N-(2-aminoquinazolin- 6 -yl)octanamide ($\mathbf{4 g}$): Octanoyl chloride ($0.13 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1$ eq). Afforded compound $\mathbf{4 g}$ as a yellow solid. Yield $42 \%(90 \mathrm{mg}, 0.31 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25$ $-1.18(\mathrm{~m}, 8 \mathrm{H}), 0.82(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 171.75, 162.16, $160.76,148.94,133.83,128.24,125.38,119.71,115.70,36.80,31.64,29.11,28.96,25.63,22.53$, 14.38 ppm ; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3323,3253,3148,3063,1666,1598,1541$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 290$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 287.1866$, found 287.1867.
N-(2-aminoquinazolin-6-yl)nonanamide (4h): Nonanoyl chloride ($0.26 \mathrm{~mL}, 1.44 \mathrm{mmol}$, 1eq). Afforded compound $\mathbf{4 h}$ as an orange solid. Yield $11 \%(47 \mathrm{mg}, 0.16 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.31-$ $1.22(\mathrm{~m}, 10 \mathrm{H}), 0.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) δ 172.41, 169.74, $155.09,137.12,135.57,130.55,118.77,117.93,117.19,36.76,31.72,29.25,29.12,29.07,25.53$, $22.55,14.42 \mathrm{ppm}$; IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3255,3125,3050,1666,1541$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 292 ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 301.2023$, found 301.2020.
N-(2-aminoquinazolin- 6 - $y l$) benzamide (4i): Benzoyl chloride ($0.07 \mathrm{~mL}, 0.62 \mathrm{mmol}, 1 \mathrm{eq}$). Afforded compound $4 \mathbf{i}$ as a yellow solid. Yield $40 \%(66 \mathrm{mg}, 0.25 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 166.01, 162.36, 160.95, 149.36, 135.25, 133.61, 132.07, 129.36, 128.88, $128.09,125.32,119.63,117.36, \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3320,3161,1655,1541$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right)$: 292; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 265.1084$, found 265.1084.
N-(2-aminoquinazolin-6-yl)-4-methylbenzamide (4j): 4-tolyoyl chloride ($0.08 \mathrm{~mL}, 0.59$ $\mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 j}$ as a light yellow solid. Yield $36 \%(59 \mathrm{mg}, 0.21 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (dd, $J=$ $9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (s 2H), 2.37 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 165.87, 162.35, 160.89, 149.27, $142.12,133.68,132.30,129.46,129.41,128.11,125.26,119.64,117.38,21.46 \mathrm{ppm}^{2}$ IR $v_{\max }\left(\mathrm{cm}^{-}\right.$ ${ }^{1}$): $3275,3108,1660,1542$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 279.1240, found 279.1240.
N-(2-aminoquinazolin-6-yl)-4-ethylbenzamide ($\mathbf{4 k}$): 4-ethyl benzoyl chloride (0.09 mL , $0.59 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 k}$ as a light yellow solid. Yield 53% ($91 \mathrm{mg}, 0.31 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.90(\mathrm{~m}, 3 \mathrm{H})$, $7.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{q}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.90,162.33,160.93,149.30,148.23$, $133.71,132.68,129.37,128.23,128.21,125.28,119.65,117.28,28.54,15.86 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-}\right.$ ${ }^{1}$): 3300, 3120, 1671, 1593, 1515; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 292; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 293.1397$, found 293.1397.

N-(2-aminoquinazolin-6-yl)-4-propylbenzamide (4I): 4-propyl benzoyl chloride (0.21 mL , $1.25 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 I}$ as an orange solid. Yield $8 \%(29 \mathrm{mg}, 0.09 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.87$ $(\mathrm{m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.61(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) $\delta 169.83$, $166.26,155.19,147.04,137.02,132.17,131.75,129.80,128.89,128.34,118.72,118.70,117.83$, $37.54,24.35,14.07 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3288,3080,2930,1671,1594,1516 ;$ UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right)$: 296; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 307.1553$, found 307.1553.
N-(2-aminoquinazolin-6-yl)-4-butylbenzamide (4m): 4-butyl benzoyl chloride (0.24 mL , $1.25 \mathrm{mmol}, 1 \mathrm{eq}$). Afforded compound $\mathbf{4 m}$ as a yellow solid. Yield 50% ($200 \mathrm{mg}, 0.62 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.88$ $(\mathrm{m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H})$, $2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$
ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $_{6}$) $\delta 165.89$, 162.30, 160.91, 149.29, 146.84, 133.71, 132.67, 129.33, 128.74, 128.13, 125.27, 119.64, 117.22, 35.44, 31.53, 22.51, $14.40 \mathrm{ppm} ;$ IR $v_{\max }\left(\mathrm{cm}^{-1}\right)$: 3315, 3113, 2920, 1673, 1595, 1517; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 294; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 321.1710$, found 321.1709 .
N-(2-aminoquinazolin-6-yl)-4-pentylbenzamide (4n): 4-pentyl benzoyl chloride (0.38 mL , $1.87 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 n}$ as an orange solid. Yield $8 \%(48 \mathrm{mg}, 0.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=$ $9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (s, 2H), $2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 169.76,166.25,155.24,147.28,136.99,132.13$, 131.73, $128.83,128.35,118.71,117.91,35.43,31.31,30.86,22.41,14.40 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3308,3120$, 2926, 1671, 1593, 1515; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 294; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 335.1866 , found 335.1867 .

N-(2-aminoquinazolin-6-yl)-4-hexylbenzamide (40): 4-hexyl benzoyl chloride (0.27 mL , $1.25 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound 4 o as a yellow solid. Yield $12 \%(50 \mathrm{mg}, 0.14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (dd, $J=$ $15.7,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.57(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 165.86,162.28,160.89,149.27,146.82,133.69,132.65,129.31,128.72$, $128.12,125.25,119.62,117.21,35.43,31.53,31.15,28.73,22.51,14.39 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3295$, $3125,2924,1671,1591,1514 ;$ UV/Vis ($\lambda_{\max } \mathrm{nm}$): 294; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 349.2023, found 349.2021.
N-(2-aminoquinazolin-6-yl)-4-heptylbenzamide (4p): 4-heptyl benzoyl chloride (0.30 mL , $1.25 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 p}$ as a yellow solid. Yield $22 \%(100 \mathrm{mg}, 0.28 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.87$ (m, 3H), $7.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO$\left.d_{6}\right) \delta 169.66,166.23,155.31,147.27,136.95,132.13,131.69,128.82,128.69,128.35,118.73$, $118.68,118.01,35.47,31.73,31.20,29.07,28.99,22.56,14.43 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3420,3380$, 3275, 3100, 1671, 1591, 1515; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 294; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 363.2179 , found 363.2173 .
N-(2-aminoquinazolin-6-yl)-4-chlorobenzamide (4q): 4-chlorobenzoyl chloride (0.16 mL , $1.25 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 q}$ as an orange solid. Yield $50 \%(184 \mathrm{mg}, 0.62 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz ,) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s} 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.92(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) $\delta 169.81,165.23,155.25,137.27,136.70,133.37,131.76$,
131.61, 130.29, 129.02, 118.94, 118.67, 117.91 ppm ; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3250,3105,1666,1540,777$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 292$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 299.0694$, found 299.0694.
N-(2-aminoquinazolin-6-yl)-4-bromobenzamide (4r): 4-bromobenzoyl chloride (0.12 mL , $0.56 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 r}$ as a yellow solid. Yield $63 \%(122 \mathrm{mg}, 0.35 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO$\left.d_{6}\right) \delta 164.99,162.37,160.98,149.44,134.29,133.40,131.88,130.22,129.33,125.84,125.35$, $119.63,117.54 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3263,3105,1665,1539,750,578$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 296$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 343.0189$, found 343.0190.
N-(2-aminoquinazolin-6-yl)-4-fluorobenzamide (4s): 4-fluorobenzoyl chloride (0.07 mL , $0.56 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound 4 s as a pastel yellow solid. Yield 65% ($103 \mathrm{mg}, 0.36$ mmol). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.11 \mathrm{H}), 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 165.79,164.90,163.31,162.35,160.97,149.40$, $133.52,131.68,131.65,130.86,130.77,129.38,125.33,119.64,117.49,115.91,115.69 \mathrm{ppm}$; IR $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3350,3145,1654,1593,1507,1351,1276 ;$ UV/Vis ($\lambda_{\max } \mathrm{nm}$): 298; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 283.0990, found 283.0988.
N-(2-aminoquinazolin-6-yl)-4-iodobenzamide (4t): 4-iodobenzoyl chloride ($0.15 \mathrm{~g}, 0.56$ $\mathrm{mmol}, 1 \mathrm{eq}$). Afforded compound 4 t as a yellow solid. Yield 63% ($138 \mathrm{mg}, 0.35 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 3 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO$\left.d_{6}\right) \delta 165.26,162.37,160.97,149.42,137.75,134.59,133.41,130.04,129.34,125.35,119.63$, 117.53, 99.76 ppm ; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3278,1664,1584,1539,500$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 296$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{OI}[\mathrm{M}+\mathrm{H}]^{+}: 391.0050$, found 391.0046.

N-(2-aminoquinazolin-6-yl)-3,5-dichlorobenzamide (4u): 3,5-dichlorobenzoyl chloride $(0.11 \mathrm{~g}, 0.52 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 u}$ as a yellow solid. Yield $68 \%(118 \mathrm{mg}, 0.35$ $\mathrm{mmol}){ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H})$, $7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) $\delta 163.10,162.47,161.07,149.59$, 138.40, 134.81, 133.05, 131.41, 129.20, $126.95,125.45,119.58,117.71 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3320,3225,3088,1657,1540,749,617$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 292; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 333.0304$, found 333.0308.
N-(2-aminoquinazolin-6-yl)-3,5-difluorbenzamide (4v): 3,5-difluorobenzoyl chloride $(0.06 \mathrm{~mL}, 0.52 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 v}$ as a pale yellow solid. Yield 34% (53 mg , $0.18 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}$,

2H) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- d_{6}) δ 163.44, 163.37, 163.34, 163.32, 163.30, 162.48, $162.04,161.97,161.08,149.60,138.73,138.68,138.63,133.02,129.26,125.46,119.58,117.75$, $111.66,111.64,111.54,111.51,107.71,107.56,107.41 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3363,3313,3114$, $1664,1548,1359,1316$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 292; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 301.0895, found 301.0900.
N-(2-aminoquinazolin-6-yl)-2-chloroacetamide (4w): Chloroacetyl chloride (0.05 mL , $0.62 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound 4 w as a pastel yellow solid. Yield $59 \%(87 \mathrm{mg}, 0.37 \mathrm{mmol})$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J$ $=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- $\left.d_{6}\right) \delta 165.17,162.50,160.90,149.23,132.94,128.30,125.59,119.63,116.59,43.98 \mathrm{ppm} ;$ IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3328,3225,3200,3113,3080,1668,1598,794 ;$ UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 290$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.0538$, found 237.0539.
N-(2-aminoquinazolin-6-yl)-2,2,2-trichloroacetamide (4x): Trichloroacetyl chloride (0.07 $\mathrm{mL}, 0.62 \mathrm{mmol}, 1 \mathrm{eq})$. Afforded compound $\mathbf{4 x}$ as a yellow solid. Yield 15% ($29 \mathrm{mg}, 0.09 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz, DMSO-d d_{6}) $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J$ $=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(176 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $162.67,161.31,160.42,150.10,131.56,129.84,125.59,119.53,119.43,79.67 \mathrm{ppm}^{2}$ IR $v_{\max }\left(\mathrm{cm}^{-}\right.$ ${ }^{1}$): 3320, 3085, 1665, 1509, 818; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 292; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 304.9758$, found 304.9761 .

Sulfonamide containing derivatives (5a-f)

N-(2-aminoquinazolin-6-yl)methane sulfonamide (5a): Compound $\mathbf{3}(0.18 \mathrm{~g}, 1.15 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in anhydrous DCM (2 mL) under nitrogen gas. Pyridine ($0.14 \mathrm{~mL}, 1.72 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the reaction cooled to $0^{\circ} \mathrm{C}$. After 20 minutes, methane sulfonyl chloride (0.10 mL , $1.27 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added dropwise and the reaction stirred for 12 h at room temperature. The reaction was quenched with water. The organic material was extracted with DCM ($20 \mathrm{~mL} \times 3$). The organic fractions were combined and dried over MgSO_{4} and then concentrated under reduced pressure. The residue was purified by flash chromatography ($0.5-3.5 \% \mathrm{MeOH} / \mathrm{NH}_{3}: \mathrm{DCM}$) to afford compound 5a as a brown solid. Yield 10% ($24 \mathrm{mg}, 0.10 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }_{6}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 162.12, $161.27,149.96,132.80,129.96,126.51,120.09,117.92,39.73 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3380,3273$, 3050, 1663, 1519; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 239.0597$, found 239.0593.

The remaining sulfonamide derivatives ($\mathbf{5 b} \mathbf{b} \mathbf{f}$) followed the same general procedure outlined for the synthesis of $\mathbf{5 a}$ with substitution of the appropriate sulfonyl chloride:
N-(2-aminoquinazolin-6-yl) ethane sulfonamide (5b): Ethane sulfonyl chloride ($0.10 \mathrm{~mL}, 1.03$ mmol, 1.1 eq). Afforded compound $\mathbf{5 b}$ as a brown solid. Yield 15% ($34 \mathrm{mg}, 0.14 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz, DMSO- d_{6}) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dd, $J=9.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 162.29,160.98,149.58,132.56,129.33,126.29,119.86$, 117.17, $45.41,8.56 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3353,3070,1665,1507$; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 294; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 253.0754$, found 253.0753.
N-(2-aminoquinazolin-6-yl)propane-1- sulfonamide (5c): 1-propane sulfonyl chloride (0.08 mL , $0.69 \mathrm{mmol}, 1.1 \mathrm{eq})$. Afforded compound $\mathbf{5 c}$ as a yellow solid. Yield $12 \%(20 \mathrm{mg}, 0.07 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=$ $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 3.20-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~h}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 169.44,155.41,136.01$, $131.01,130.88,119.02,117.69,117.54,53.11,17.31,13.04 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3288,3117$, 1661, 1604, 1520; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 267.0910, found 267.0912.

N-(2-aminoquinazolin-6-yl)butane-1-sulfonamide (5d): 1-butane sulfonyl chloride ($0.12 \mathrm{~mL}, 0.96$ mmol, 1.1 eq). Afforded compound $\mathbf{5 d}$ as a yellow solid. Yield $19 \%(48 \mathrm{mg}, 0.17 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=$ $8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{p}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.32(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO- $\left.d_{6}\right) \delta$ $169.35,155.41,136.00,130.99,130.89,119.02,117.68,117.56,51.12,25.57,21.13,13.95 \mathrm{ppm} ;$ IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3303,3124,1662,1603,1521$; UV/Vis $\left(\lambda_{\max } \mathrm{nm}\right): 290$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 281.1067$, found 281.1067.
N-(2-aminoquinazolin-6-yl)hexane-1- sulfonamide (5e): 1-hexane sulfonyl chloride ($0.18 \mathrm{~mL}, 1.1$ $\mathrm{mmol}, 1.1 \mathrm{eq})$. Afforded compound $\mathbf{5 e}$ as a yellow solid. Yield 52% ($161 \mathrm{mg}, 0.52 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-$ $1.12(\mathrm{~m}, 6 \mathrm{H}), 0.82-0.73(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) $\delta 169.35,155.41,136.00$, $130.99,130.89,119.02,117.68,117.56,51.12,25.57,21.13,21.03,13.95,13.89 \mathrm{ppm}^{2}$ IR $v_{\max }\left(\mathrm{cm}^{-}\right.$ ${ }^{1}$): 3508, 3363, 3258, 3091, 1661, 1603, 1522; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 309.1380$, found 309.1381.

N-(2-aminoquinazolin-6-yl)thiophene-2-sulfonamide (5f): 2-thiophene sulfonyl chloride ($0.21 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.1 \mathrm{eq}$). Afforded compound $\mathbf{5 f}$ as a yellow solid. Yield 5% (16 mg , $0.05 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO- d_{6}) δ 162.43, 161.12, 149.97, 140.13,
$133.88,132.95,131.51,129.84,128.10,126.16,119.65,118.87 \mathrm{ppm}$; IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3350,3060$, 1663, 1505; UV/Vis ($\lambda_{\max } \mathrm{nm}$): 290; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 307.0318$, found 307.0319.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance Spectra

Compound 2

Compound 3

Compound 4a

[^0]
Compound 4b

Compound 4c

[^1]
Compound 4d

~

[^2]
Compound 4e

L + لi ii

Compound 4f

[^3]
Compound 4g

ㅇํำ

[^4]
Compound 4h

i $1 \quad$ i: iii

[^5]
Compound 4i

ํํํํํ․․

$$
\begin{array}{ll}
230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10
\end{array}
$$

Compound 4j

Compound 4k

Compound 41

[^6]
Compound 4m

Compound 4n

(

Compound 40

Compound 4p

Compound 4q

[^7]
Compound 4r

Compound 4s

Compound 4t

[^8]
Compound 4u

[^9]
Compound 4v

Compound 4w

Compound 4x

1

Compound 5a

Compound 5b

(

Compound 5c

1 型

Compound 5d

[^10]
Compound 5e

Compound Sf

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

