Supporting Information for

FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products

Chandrasekhar Bandari,^{†a} Erin M. Scull,^{†a} Tejaswi Bavineni,^a Susan L. Nimmo,^a Eric D. Gardner,^a Ryan C. Bensen,^a Anthony W. Burgett,^a and Shanteri Singh^{*a}

Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

E-mail: shanteri.singh@ou.edu

Table of contents

1.	Figure S1: Comparison of UV profile of 17 with L-Trp	S2
2.	Figure S2: HPLC chromatograms of FgaPT2 reaction with tryptophan	S3
3.	Figure S3: HPLC chromatograms of FgaPT2 reaction with 7-hydroxy-K252c	
	and alkyl-PP analogues	S3
4.	Table S1: Kinetic parameters for L-Trp in FgaPT2 reactions	S4
5.	Table S2: HRMS data of synthesized alkyl-PP analogues	S5
6.	Table S3: HRMS data of alkyl-tryptophan analogues	S6
7.	Table S4: HRMS data of alkyl-7-hydroxy-K252c analogues	S7
8.	Figure S4: Analysis of representative NMR spectra of	
	alkyl-tryptophan analogs	S8-S11
9.	Table S5: 1H and 13C data of alkyl-tryptophan analogues	S12-18
10.	. Table S6: ¹ H and ¹³ C data of alkyl-7-hydroxy-K252c analogues	S19-20
11.	. Table S7: % conversion of alkyl-PP analogues used in Figure 3	S21
12.	. Figure S5: Biological Activity of alkyl-7-hydroxy-K252c analogues	S22

Figure S1: Comparison of UV wavelength scan of L-Trp (blue) and 17 (orange).

Figure S2: RP-HPLC chromatograms of FgaPT2 catalyzed reactions with L-Trp (labelled with red asterisk) and alkyl-PP analogues that led to the formation of corresponding alkyl tryptophan analogues. The alkyl-PP analogue used for the reaction is labelled on the chromatogram.

Figure S3: RP-HPLC chromatograms of FgaPT2 catalyzed reactions with 7-hydroxy-K252c (**56**) and alkyl-PP analogues that led to the formation of corresponding alkyl-7-hydroxy-K252c analogues (**57-62**).

Alkyl-PP	Concentration of	K _{cat}	K _M	k _{cat} / K _M
analogue	Alkyl-PP (mM)	(min ⁻¹)	(mM)	(mM⁻¹min⁻¹)
1	2	65 ± 3	0.17 ± 0.04	380 ± 90
2	5	14.3 ± 0.2	0.28 ± 0.02	51 ± 4
3	5	20.80 ± 0.4	0.26 ± 0.02	78 ± 6
4	5	0.38 ± 0.01	0.18 ± 0.02	2.1 ± 0.2
6	10	5.2 ± 0.5	0.14 ± 0.07	36 ± 16
7	2	0.84 ± 0.05	0.19 ± 0.06	4 ± 1
8	5	3.0 ± 0.1	0.16 ± 0.03	18 ± 4
9	5	1.44 ± 0.08	0.33 ± 0.08	4 ± 1
17	5	33 ± 2	0.24 ± 0.06	137 ± 35
20	10	2.23 ± 0.04	0.31 ± 0.02	7.2 ± 0.5
22	5	5.1 ± 0.2	0.17 ± 0.02	29 ± 4
24	5	5.48 ± 0.09	0.22 ± 0.02	25 ± 2
25	5	0.88 ± 0.02	0.20 ± 0.02	4.3 ± 0.5
27	5	0.31 ± 0.01	0.12 ± 0.02	2.5 ± 0.4
28	5	0.123 ± 0.004	0.25 ± 0.03	0.48 ± 0.06
29	5	0.242 ± 0.006	0.25 ± 0.03	1.0 ± 0.1

Table S1: Kinetic parameters for FgaPT2 with varied concentration of L-Trp and constant concentration with representative alkyl-PP analogues in 25 mM Tris, 5 mM MgCl₂, 50 mM KCl, pH 7.5, 35 °C.

Compound	Chemical Formula	Calculated	Observed
		Mass (Da)	(Da)
5	C ₇ H ₁₃ O ₇ P ₂ [M-H] ⁻	271.0142	271.0148
9	$C_4H_8BrO_7P_2 [M-H]^{-1}$	308.8934	308.8932
22	C ₇ H ₉ O ₇ P ₂ [M-H] ⁻	266.9824	266.9828
23	C ₈ H ₁₁ O ₈ P ₂ [M-H] ⁻	296.9929	296.9939
24	C ₈ H ₁₁ O ₈ P ₂ [M-H] ⁻	296.9929	296.9927
25	C ₈ H ₁₁ O ₈ P ₂ [M-H] ⁻	296.9929	296.9926
26	C ₈ H ₁₁ O ₇ P ₂ [M-H] ⁻	280.9980	280.9978
27	C ₇ H ₈ FO ₇ P ₂ [M-H] ⁻	284.9729	284.9728
28	C ₇ H ₈ ClO ₇ P ₂ [M-H] ⁻	300.9439	300.9428
29	C ₇ H ₈ BrO ₇ P ₂ [M-H] ⁻	344.8929	344.8927
30	$C_7H_8NO_9P_2 [M-H]^-$	311.9674	311.9677
31	C ₉ H ₁₃ O ₉ P ₂ [M-H] ⁻	327.0035	327.0048
32	C ₉ H ₁₃ O ₉ P ₂ [M-H] ⁻	327.0035	327.0027
33	C ₇ H ₇ F ₂ O ₇ P ₂ [M-H] ⁻	302.9635	302.9629
34	$C_{10}H_{15}O_{10}P_2 [M-H]^{-1}$	357.0140	357.0135

Table S2: Summary of HRMS data of synthetic alkyl-PP analogues.

Alkyl -PP used	Enzyme	Chamical Formula	Calculated	Observed Mass
for the reaction	Product	Chemical Formula	Mass (Da)	(Da)
1	35	C ₁₆ H ₂₁ N ₂ O ₂ [M+H] ⁺	273.1603	273.1602
2	36	$C_{17}H_{23}N_2O_2$ [M+H] ⁺	287.1760	287.1754
3	37	$C_{18}H_{25}N_2O_2$ [M+H] ⁺	301.1916	301.1916
4	42	C ₁₈ H ₂₃ N ₂ O ₂ [M+H] ⁺	299.1760	299.1756
4	43	C ₁₈ H ₂₃ N ₂ O ₂ [M+H] ⁺	299.1760	299.1761
5	38	$C_{18}H_{23}N_2O_2$ [M+H] ⁺	299.1760	299.1768
6	44	$C_{19}H_{25}N_2O_2$ [M+H] ⁺	313.1916	313.1913
6	6-Trp₂	$C_{19}H_{25}N_2O_2$ [M+H] ⁺	313.1916	313.1911
7	40	$C_{15}H_{19}N_2O_2$ [M+H] ⁺	259.1447	259.1449
7	41	$C_{15}H_{19}N_2O_2$ [M+H] ⁺	259.1447	259.1444
8	45	$C_{15}H_{18}CIN_2O_2$ [M+H] ⁺	293.1057	293.1061
8	8-Trp₂	$C_{15}H_{18}CIN_2O_2 [M+H]^+$	293.1057	293.1062
9	46	C ₁₅ H ₁₈ BrN ₂ O ₂ [M+H] ⁺	337.0552	337.0552
9	9-Trp₂	C ₁₅ H ₁₈ BrN ₂ O ₂ [M+H] ⁺	337.0552	337.0547
10	10-Trp	$C_{14}H_{17}N_2O_2[M+H]^+$	245.1290	245.1294
13	13-Trp	$C_{20}H_{21}N_2O_2$ [M+H] ⁺	321.1603	321.1601
14	14-Trp	$C_{21}H_{23}N_2O_3$ [M+H] ⁺	351.1709	351.1711
15	15-Trp	$C_{21}H_{23}N_2O_2$ [M+H] ⁺	335.1760	335.1757
16	16-Trp	$C_{26}H_{25}N_2O_2$ [M+H] ⁺	397.1916	397.1912
17	53	$C_{16}H_{19}N_2O_2[M+H]^+$	271.1447	271.1442
17	17-Trp₂	$C_{16}H_{19}N_2O_2[M+H]^+$	271.1447	271.1444
18	47	$C_{18}H_{23}N_2O_2$ [M+H] ⁺	299.1760	299.1768
19	54	$C_{17}H_{21}N_2O_2$ [M+H] ⁺	285.1603	285.1602
19	19-Trp₂	$C_{17}H_{21}N_2O_2$ [M+H] ⁺	285.1603	285.1605
20	55	C ₁₈ H ₂₃ N ₂ O ₂ [M+H] ⁺	299.1715	299.1751
20	20-Trp ₂	$C_{18}H_{23}N_2O_2$ [M+H] ⁺	299.1715	299.1749
21	21-Trp	$C_{22}H_{23}N_2O_2$ [M+H] ⁺	347.1760	347.1767
22	48	C ₁₈ H ₁₉ N ₂ O ₂ [M+H] ⁺	295.1447	295.1430
24 39 ($C_{19}H_{21}N_2O_3[M+H]^+$	325.1552	325.1547
25	49	$C_{19}H_{21}N_2O_3[M+H]^+$	325.1552	325.1540
27	50	$C_{18}H_{18}FN_2O_2[M+H]^+$	313.1352	313.1338
28	51	$C_{18}H_{18}CIN_2O_2[M+H]^+$	329.1057	329.1039
29	52	$C_{18}H_{18}BrN_2O_2[M+H]^+$	373.0552	373.0531

Table S3: Summary of HRMS data of alkyl-Trp analogues from FgaPT2 catalyzed alkylation reaction with L-Trp and synthetic alkyl-PP analogues. The subscript '2' represent the minor product based on HPLC retention time.

Alkyl -PP used	Compound	Chamical Formula	Calculated Mass	Observed Mass
for the reaction	Compound		(Da)	(Da)
-	56	C ₂₀ H12N ₃ O ₂ [M-H] ⁻	326.0930	326.0934
1	57	C ₂₅ H ₂₀ N ₃ O ₂ [M-H] ⁻	394.1556	394.1553
2	58	C ₂₆ H ₂₂ N ₃ O ₂ [M-H] ⁻	408.1712	408.1712
3	59	C ₂₇ H ₂₄ N ₃ O ₂ [M-H] ⁻	422.1869	422.1882
4	60	C ₂₇ H ₂₂ N ₃ O ₂ [M-H] ⁻	420.1712	420.1727
5	61	C ₂₇ H ₂₂ N ₃ O ₂ [M-H] ⁻	420.1712	420.1709
6	62	C ₂₈ H ₂₄ N ₃ O ₂ [M-H] ⁻	434.1869	434.1878

Table S4: Summary of HRMS data of alkyl-7-hydroxy-K252c analogues (**57-62**) from FgaPT2 catalyzed alkylation reaction with 7-hydroxy-K252c (**56**) and synthetic alkyl-PP analogues.

Figure S4: Representative 2D ¹H,¹³C HSQC (top) and HMBC (bottom) demonstrating the C4 (**A**), C5 (**B**), C3 (**C**) and N1 (**D**) regio-chemical attachment of the alkyl groups on L-Trp. The blue circled HMBC peaks show a correlation between atoms with red arrows on the structure. Black and blue colored labels denote signals from the indole ring and alkyl-group, respectively.

The NMR analysis of C4-alkyl-Trp analogues

Six allylic analogues (1, 2, 3, 4, 5, and 7) and an o-methoxy benzyl analogue (24) in FgaPT2 catalyzed L-Trp alkylation reactions produced normal C4 alkylated products. The reaction involving 1, 2, 3, 5, and 24 produced a single C4 product, whereas 4 and 7 produced the C4-isomer as the major product. Based on ¹H and 2D NMR analysis of the alkyl-group, all seven C4-alkyl-Trp analogues were confirmed to be normal alkylated. The ¹H NMR of C4-alkyl-Trp analogues when compared to that of tryptophan, showed the disappearance of the downfield shifted aromatic doublet signal corresponding to the H4 (7.58 ppm) of tryptophan. Among the four observed aromatic signals of these alkyl-tryptophan analogues, one was a singlet corresponding to H2 of the indole moiety, two doublets (H5 and H7) and one triplet (H6). Assignment of the aromatic signals was further supported by the COSY correlation peaks (H5-H6 and H6-H7) and carbon chemical shift values derived from ¹H-¹³C-HSQC, that confirmed the substitution of the alkyl group to take place on the C4 position of the aromatic ring of tryptophan (top panel of Figure S4A, a representative ¹H-¹³C-HSQC spectrum of 42). In order to unambiguously confirm the findings, representative 2D ¹H-¹³C-HMBC spectra were collected. The sequential connectivity between H5 of the indole moiety to the C1' of the alkyl group (bottom panel of Figure S4A, a representative ¹H-¹³C-HMBC spectrum of 42, Table S5) and/or H1' of the alkyl group to the C5 and C3a of the tryptophan aromatic moiety (**Table S5**) unambiguously confirmed the attachment of alkyl group at C4 position of tryptophan. Further, the NMR data of **35** and **40** matched the previously reported values,^{30, 41} that formed the basis for comparison with the rest of the C4-isomers. Additional confirmation of the products was obtained from HRMS data, that displayed mass corresponding to the alkylated tryptophan product (**Table S3**). These results demonstrate the ability of FgaPT2 to catalyze C4-normal alkylation of tryptophan using unnatural alkyl donors including, o-methoxybenzyl and other allylic (1-5, and 7) alkyl donors.

The NMR analysis of C5-alkyl-Trp analogues

Eleven alkyl-PP analogues (4, 6, 7, 8, 9, 18, 22, 25, 27, 28, and 29) in a FgaPT2 catalyzed alkylation reaction with tryptophan produced normal C5 alkylated products. These include single product of FgaPT2 reactions with 18, 22, 25, 27, 28, 29; major product of reactions involving 6, 8, and 9; and minor product of reactions with 4 and 7. Detailed ¹H and 2D NMR analysis of the alkyl-group of all 11 of the C5-alkyl-Trp analogues were confirmed to be normal alkylated (**Table S5**). Comparison of ¹H NMR and ¹H-¹³C-HSQC spectra of the C5-alkyl-Trp analogues with that of tryptophan revealed that the upfield shifted triplet signal corresponding to H5 of the indole moiety (¹H,¹³C =7.05 ppm, 118.1 ppm) has disappeared. Further, the presence of two singlets (H2 and H4) and two doublets (H6 and H7) and COSY correlation between H6-H7, along with their signature carbon chemical shift values derived from the combined analysis of COSY, and ¹H-¹³C-HSQC spectra (top panel of **Figure S4B**, a representative ¹H-¹³C-HSQC

spectrum of **43**, **Table S5**); implied the alkyl addition to take place at the C5 position of the aromatic ring of tryptophan. To confirm the C5 regio-specific attachment of the alkyl group and to identify the aromatic signals of the benzylic alkyl substituents, ¹H-¹³C-HMBC spectra were collected for all new benzylic alkyl tryptophan analogues (involving **25**, **27**, **28** and **29**) and two representative allylic alkyl tryptophan analogues (involving **4** and **9**) (**Table S5**). The HMBC spectra displayed the correlation from H4 and H6 of tryptophan to the C1' of the alkyl-group (bottom panel of **Figure S4B**, a representative ¹H-¹³C-HMBC spectrum of **43**, **Table S5**); and/or from H1' of the alkyl group to C4 and C6 of the tryptophan aromatic moiety (see Supporting Information, **Table S5**), confirming the C5-alkylation of tryptophan. In addition, the NMR data of **48** matched the previously reported values.^{41, 42} Additional confirmation of alkyl group attachment to tryptophan was obtained via HRMS analysis (**Table S3**). These results support the ability of FgaPT2 to catalyze normal alkylation at the C5 position of unsubstituted L-tryptophan using diverse benzylic and allylic alkyl donors.

The NMR analysis of C3-alkyl-Trp analogue (53)

The UV spectra of the major product of the FgaPT2 catalyzed a reaction with **17** and tryptophan displayed maximum absorption at 228, 240, and 289 nm (**Figure S1**), suggesting the presence of an indoline-like structure. This was further confirmed by HRMS and NMR analysis (**Tables S3 & S5**). The ¹H and 2D NMR analysis of the alkyl group suggested the alkylation to happen in a normal manner. In addition, the coupling pattern and COSY correlation of the four aromatic protons suggested the six-membered aromatic ring of the indole moiety is similar to that of tryptophan, implying the alkyl substitution is not directly on the six-membered ring of tryptophan. Further, the combined analysis of ¹H-¹³C-HSQC and ¹H-¹³C-HMBC spectra revealed the upfield shifted signals of H2/C2 (5.34 ppm/82.2 ppm) and C3 (58.2 ppm) of tryptophan (**Figure S4C**), clearly indicating the broken aromaticity of the pyrrole ring. The unambiguous confirmation of cyclization, that yielded a hexahydro-pyrroloindoline moiety was derived from ¹H-¹³C-HMBC analysis, that displayed the connectivity between H1' of the alkyl group to C2, Cβ and C3a position; and C2 to Cα of the alkyl-pyrroloindoline moiety (bottom panel of **Figure S4C**, **Table S5**). These analyses confirmed FgaPT2 to catalyze normal C3-alkylation followed by cyclization of tryptophan in the presence of **17**.

The NMR analysis of N1-alkyl-Trp analogues (54 and 55)

The NMR analysis of the major product of FgaPT2 catalyzed reaction using alkyl-PP analogues, **19** and **20**, confirmed them to be N1-alkylated. The detailed analysis of **54** suggested a normal alkylation based on the pattern of signals of the alkyl moiety, whereas, **55** indicated it to be reverse alkylated via the C5' (reverse_{C5'}) of alkyl-PP analogue, **20** (**Figure 5**). More specifically, the chemical shifts, coupling pattern

and COSY correlation of all aromatic protons (H2, H4, H5, H6, and H7) of the **54** and **55** analogues appeared similar to that of tryptophan, implying no substitution to take place directly on the carbon atom of the aromatic ring of tryptophan. This is supported by the ¹H and ¹³C chemical shift assignment (top panel of **Figure S4D**, a representative ¹H-¹³C-HSQC spectrum of **55**, **Table S5**) and COSY correlations (H4-H5, H5-H6, H6-H7) of the **54** and **55**. The H1' chemical shift value of the alkyl group in **54** at 5.05 ppm supported the N-alkylation of tryptophan with attachment via C1'. The pattern of signals of alkyl moiety in **55** suggested C5' of **20** was attached to N1 of the indole ring with C5'/H5' chemical shift values at 53 ppm/5.21 ppm respectively (top panel of **Figure S4D**, **Table S5**). The confirmation of the N1-alkylation and alkyl group chemical shift assignment of **55** was derived from the ¹H-¹³C HMBC spectra, that displayed a correlation between H5' of the alkyl group and C2 of the tryptophan aromatic moiety (bottom panel of **Figure S4D** for **55**, **Table S5**). This is the first demonstration of FgaPT2 to carry out the reverse alkylation (although via C5' group of **20**) at N1 of tryptophan. Therefore, while the FgaPT2-catalyzed N1-normal alkylation has been previously demonstrated with tryptophan derivatives using DMAPP,³⁴ this study revealed the possibility of N1-reverse_{C5'} alkylation of native tryptophan by an unnatural alkyl-donor, **20**.

Table S5. Summary of NMR chemical shift assignment of the alkyl-L-Trp analogues (500 MHz). Where δ_H and δ_C values are in ppm and coupling constant, *J* is in Hz. a= DMSO-d₆, b= MeOH-d₄

Structure / COSY HMBC Correlation /	$ \begin{array}{c} 5' 3' 4' & 0 & 0H \\ 2 & 1' 4 & 3 & 0 & 0H \\ 5 & 7 & 1 & 2 & 0 \\ 7 & 1 & 2 & 0 & 0H \\ 35^{a\star} & 35^{a\star} \end{array} $		$ \begin{array}{c} 6' & 5' & 3' & 4' & 0 & 0H \\ 2' & 1' & 4 & 3 & 0 & 0H \\ 2' & 1' & 4 & 3 & 0 & 0H \\ 5' & 0 & 0H & 0H & 0H & 0H & 0H & 0H \\ 5' & 0 & 0H & 0H & 0H & 0H & 0H & 0H & 0H$		$ \begin{array}{c} 7' & 5' & 0 \\ 2' & 1' & 5' & 0 \\ 2' & 1' & 3 & 0 \\ 5 & 0 & 0H \\ 5 & 0 & 0H \\ 7 & 1 & 0H \\ 5 & 0 & 0H \\ $	
Compound	Σ multi (1)	5	Σ multi (l)	Σ	Σ multi (1)	5
POSITION	OH, MUITI (J)	OC pf		OC pf	OH, MUITI (J)	OC pf
	-	n.i.		n.i.		n.i.
	10.99, S	-	10.88, 0 (2.5)	-	10.89, 0 (2.5)	-
2	7.18, S	125.3	7.18, 0 (2.5)	124.8	7.18, 0 (2.5)	124.6
3	-	n.r.	-	n.r.	-	n.r.
3a	-	n.f.	-	n.f.	-	n.f.
4	-	n.t.	-	n.t.	-	n.t.
5	6.73, d (7.7)	119.4	6.71, d (7.6)	118.9	6.72, d (7.6)	118.7
6	6.97, t (7.7)	121.7	6.95, t (7.6)	121.5	6.95 t, (7.6)	121.5
7	7.19, d (7.7)	110.1	7.17, d (7.6)	109.9	7.17, d (7.6)	109.9
7a	-	n.f.	-	n.f.	-	n.f.
β	3.51, dd (15.6, 4.4); 3.11, dd (15.6, 10.5)	n.f.	3.57, dd (15.6, 3.3); 2.94, dd (15.6, 10.7)	n.f.	3.58, dd (15.6, 3.2); 2.95, dd (15.6, 10.6)	29.7
α	3.41	n.f.	3.39, dd (10.6, 3.2)	56.1	3.39, dd (10.6, 3.2)	55.9
1'	3.7-3.66, m	31.9	3.68, dd (16.0, 7.8) 3.74, dd (16.0, 6.0)	31.5	3.71, dd (16.0, 7.8) 3.76, dd (16.0, 7.1)	31.1
2'	5.29, dd (7.8, 6.0)	124.1	5.32 dd (7.8, 6.0)	122.7	5.29, t (7.1)	122.1
3'	-	n.f.	-	n.f.	-	n.f.
4'	1.70, s	26.1	1.71, s	16.6	2.08-2.02, m	29.2
5'	1.70, s	18.4	2.02, q (7.4)	32.4	0.98, t (7.5)	13.4
6'	-	-	0.98, t (7.4)	13.1	2.18-2.12,m	23.5
7'	-	-	-	-	0.97, t (7.5)	13.4

Structure / COSY HMBC Correlation / Compound	5' - 2' - 1' - 3' - 0 - 0H 6' - 7' - 4 - 3 - 0 - 0H 5 - 6 - 7 - 1' - 3 - 0 - 0H 5 - 6 - 7 - 1' - 3 - 0 - 0H 7 - 1' - 3 - 0 - 0H 3 - 0 - 0H 3 - 0 - 0H				5' 5' 4' + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	
Position	Σ multi (l)	δ.	Σ		unknown isomer)	
				173 1		170.5
NH	exc	-	exc	-	exc	-
2	7 14 s	124 1	7 16 s	123.9	7 17 s	124 8
3	-	109.3	-	107.9	-	107.5
3a	-	125.3	-	127.1	-	124.4
4	-	131.5	7.50. d (1.5)	118.0	-	133.8
5	6.79, d (7.6)	121.2	-	130.8	6.85, dd, (7.1, 0.8)	119.8
6	7.04, t (7.6)	121.5	6.97, dd (8.4, 1.5)	122.9	7.04, dd, (8.2, 7.1)	121.9
7	7.23, d (7.6)	109.5	7.27, d (8.4)	110.9	7.24, dd, (8.2, 0.8)	109.7
7a	-	137.8	-	135.7	-	138.2
β	3.76, dd (15.6, 3.5) 3.02, dd (15.6,11.2)	29.3	3.53, dd (15.2, 3.9); 3.10, dd (15.2, 9.9)	27.4	3.83, dd, (15.5, 3.9); 3.19, dd, (15.5, 11.1)	28.8
α	3.83, dd (11.2, 3.5)	56.2	3.86, dd (9.9, 3,9)	55.5	4.18, dd, (11.1, 3.9)	54.3
1'	3.67, s	41.5	3.33, s	44.7	3.76 – 3.72, m	33.4
2'	-	138.1	-	138.2	5.47 – 5.41, m	119.4
3'	5.08, s	121.8	5.54-5.43, m	121.6	-	144.3
4'	1.96-1.9, m	25.1	2.08-2.00, m	25.1	2.39 – 2.25, m	33.5, 28.7
5'	1.60-1.54, m	22.6	1.64-1.52, m	22.5	1.78 – 1.70, m 1.69-1.62, m	26.4, 26.3
6'	1.69-1.63, m	23.1	1.64-1.52, m	22.5	-	-
7	2.13-2.06, m	28.8	1.93-1.86, m	27.8	-	-

Structure / COSY HMBC Correlation 4' 3' 2' 5		$ \begin{array}{c} 4' \\ 2' \\ 4' \\ 4' \\ 4' \\ 4' \\ 5 \\ 6 \\ 7 \\ H \\ 4' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		$\begin{array}{c} & & & \\ & & & \\ & & & \\ 4' & & & \\ 3' & & & \\ & & & \\ & & & \\ & & & \\ 6 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $	
1	7 H	ľ	, 40ª*		45°
Compound	44	-			-
Position	δ _H , multi (J)	ð c	δ _H , multi (J) /	ðc	δ _H , multi (J)
СООН	•	n.f.	-	n.t.	-
NH	10.73, br.s	-	10.88, br. s	-	exc
2	7.14, d (1.9)	124.5	7.16, d (2.1)	124.7	7.30, s
3	-	n.f.	-	n.f.	-
3a	-	n.f.	-	n.f.	-
4	7.31, s	117.6	-/	n.f.	7.58, s
5	-	n.f.	6.73, d (7.1)	119.7	-
6	6.88, dd (8.4,				
0	1.2)	122.3	6.97, t (7.6)	121.5	7.47, d (8.4)
7	7.24, d (8.4)	111.8	7.18, dd (7.6, 7.1)	110.4	7.18, d (8.4)
7a	-	n.f.	-	n.f.	-
	3.33-3.25, m				
β	2.85, dd		3.57,dd (15.5, 3.6)		3.47, dd (15.2, 4.8) 3.24,
	(15.2,9.7)	27.9	2.88,dd (15.5, 11.1)	29.7	dd (15.2, 8.5)
	3.39, dd, (9.7,				
α	3.9)	55.3	3.36-3.34, m	56.1	4.04, dd (8.5, 4.8)
			3.74, dd (15.5, 6.4)		
1	3.36, d (7.5)	33.5	3.62, dd (15.5, 6,1)	36.2	3.63, d (7.4)
2'	5.27, t (7.5)	121.7	5.68-5.56, m	131.7	5.92-5.81, m
3'	-	n.f.	5.52-5.42, m	125.5	-
	2.25, t (5.2)	28.7,			
4	2.07, t (5.2)	37.1	1.62, d (6.1)	18.2	2.18-2.13, m
5'	1.60-1.44, m	28	-	-	-
6'	1.60-1.44, m	28	-	-	-

Structure / COSY HMBC Correlation / Compound	Br 4'-2'-5 6 7 H ² 46 ^b O NH ₂ 2'-6 7 H ² 46 ^b		5 4 4 2 7 8 0 2 1 8 0 СООН 5 6 7 Н 5 2 1 8 0 СООН 5 6 7 Н 5 8 0 СООН 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6' 3' 1' 5 4 3 OH 6' 5' 4' 2' 6 7 H 47 ^b
Position	δ _н , multi (J)	δ _c	δ _н , multi (J)	δ _c	δ _н , multi (J)
COOH	-	173.0		169.2	-
NH	exc	-	exc	-	exc
2	7.18, s	124.2	5.34, s	82.2	7.17, s
3	-	107.9	-	58.2	-
3a	-	127.1	-	130.5	-
4	7.53, s	122.4	7.24, d (7.6)	123.5	7.51, s
5	-	129.9	6.86, t (7.6)	120.3	-
6	6.99, d (8.3)	117.4	7.15, t (7.6)	129.2	6.98, d (8.3)
7	7.29, d (8.3)	111.3	6.71, d (7.6)	109.7	7.28, d (8.3)
7a	-	135.8	-	148.7	-
β	3.51, dd (15.3, 4.0) 3.12, dd (15.3, 9.5)	27.3	2.76, dd (13.3, 6.2) 2.44, dd (13.3, 11.8)	40.7	3.51, dd (15.3, 4,0) 3.10, dd (15.3, 9.6)
α	3.86, dd, (9.5, 4.0)	55.5	4.00, dd (11.8, 6.2)	57.9	3.85, dd (9.6, 4.0)
1'	3.57, d (7.0)	37.9	2.78-2.68, m	34.9	3.52-3.49, m
2'	5.92, t (7.0)	129.1	5.24-5.16, m	125.3	5.71, dt (14.8, 7.00)
3'	•	121.4	6.10, t (11.0)	132.7	6.31,dd(14.8, 11.0)
4'	2.32, s	27.7	6.65, ddd (16.7, 11.0, 10.6)	131.6	5.79, d (11.0)
5'	-	-	5.22, d (16,7) 5.15, d (10.6)	118.0	-
6'	-	-	-	-	1.75, (s); 1.73, (s)

Structure / COSY HMBC Correlation/ Compound	$ \begin{array}{c} $	5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
Position	δ _н , multi (J)	δ _н , multi (J)	δ _c
СООН	-	-	172.9
NH	-	-	-
2	7.19, s	7.27, s	124.2
3	-	-	108.1
3a	-	-	127.8
4	7.58, d (7.9)	7.71, d (7.8)	118.6
5	7.02, dd (7.9, 7.6)	7.08, dd (7.8, 7.6)	119.1
6	7.12, dd (8.2, 7.6)	7.16, dd (8.2, 7.6)	121.6
7	7.39, d (8.2)	7.40, d (8.2)	109.8
7a	-	-	136.5
β	3.34-3.24, m 2.93, dd (15.1, 8.8)	3.52, dd (15.2, 4.1) 3.15, dd (15.2, 9.3)	27.4
α	3.41-3.36, m	3.85, dd (9.3, 4.1)	55.6
1'	5.05-4.90, m	4.96, s 4.93, s	116.3
2'	-	-	141.3
3'	6.30, d (15.8)	6.22, d (15.8)	133.1
4'	5.80, dt (15.8, 6.1)	5.89, dd (15.8, 6.01)	130.3
5'	4.89-4.77, m	5.21, p (7.0, 6.0)	52.9
6'	1.76, s	1.68, d (7.0)	19.6
7'	-	1.81, s	17.6

Structure /	3' , 1' _ 4 _ 3		5'4' 3'0 O	-04	8' 0' 1' 4	O OH
HMBC	4'	2	6' 2' 1' b	a	H ₃ CO 4' 3 3 3	NH ₂
Correlation	5' 3' 6 7 N	Í1 I	5 4 3	NH ₂	5' 7' 6	-72 1
1			6 N1 7 H			1
Compound	48 ^{a*}		39 ^b		49 ^b	
Position	δ _H , multi (J)	δc	δ _н , multi (J)	δc	δ _н , multi (J)	δ _c
СООН	-	n.f.	-	170.2	-	170.8
NH	10.77, s	-	exc	-	exc	-
2	7.15, s	124.9	7.14, s	124.9	7.18, s	124.6
3	-	n.f.	-	107.4	-	106.5
3a	-	n.f.	-	124.8	-	127.0
4	7.41, s	118.5	-	131.5	7.48, d (1,6)	117.5
5	-	n.f.	6.77, d (7.2)	121.6	-	132.0
6	6.92, dd (8.3, 1.6)	122.8	7.08, dd (8.2, 7.2)	121.9	7.00, dd (8.4, 1.6)	123.4
7	7.24, d, (8.3)	111.9	7.31, d (8.2)	110.1	7.30, d (8.4)	111.5
7a	-	n.f.	-	138.0	-	135.7
β	3.28, dd(15.2, 3.7) 2.86, dd (15.2, 9.6)	n.f.	3.52, dd (15.4, 3.9); 2.98, dd (15.4, 11.4)	28.4	3.50, dd, (15.3, 4.7) 3.27, dd (15.3, 8.4)	26.5
α	3.38, dd (9.6, 3.7)	n.f.	3.73, dd (11.4, 3.9)	53.7	4.19, dd (8.4, 4.7)	53.5
1'	3.98, s	42.3	4.42, d (16.9); 4.28, d (16.9)	33.2	4.03, s	41.7
2'	-		-	129.5	-	144.1
3'	7.29 – 7.17, m	128.9	-	157.1	6.76, t (2.1)	114.2
4'	7.29 – 7.17, m	128.9	6.96, d, (8.2)	109.9	-	159.8
5'	7.18 – 7.1, m	125.9	7.18, dd (8.2,7.4)	127.2	6.71, dd (8.2, 2.1)	110.7
6'	-	-	6.74, t (7.4)	120.0	7.15, t (7.9)	129.1
7'	-	-	6.64, d (7.4)	129.1	6.80, dd (7.9, 2.1)	121.1
8'	-	-	3.85, s	54.5	3.73 (s, 3H)	54.3

Structure / COSY HMBC Correlation	о о о о о о о о о о о о о о о о о о о		O O O O O O O O O O O N H ₂ O O O O O O N H ₂		и 4' 5' 6' 4' 6' 0 0 0 0 0 0 0 0 0 0 0 0 0	
/ Compound	50 ^b		51 ^b		52 ^b	
Position	δ _н , multi (J)	δc	δ _н , multi (J)	δc	δ _н , multi (J)	δc
COOH	-	170.3	-	170.5	-	170.4
NH	exc	-	exc	-	exc	-
2	7.18, s	124.4	7.19, s	124.7	7.19, s	124.7
3	-	106.2	-	106.5	-	106.4
3a	-	127.1	-	127.1	-	127.1
4	7.46, d (1.4)	117.4	7.47, s	117.5	7.46, d (1.4)	117.5
5	-	131.9	-	131.5	-	131.5
6	6.98, dd (8.3, 1.4)	122.9	6.98, d (8.3)	123.0	6.98, dd (8.3, 1.4)	123.0
7	7.31, d (8.3)	111.2	7.31, d (8.3)	111.5	7.31, d (8.3)	111.5
7a	-	135.7	-	136.2	-	135.7
β	3.48, dd (15.2, 4.9) 3.30, dd (15.2, 8.1)	26.1	3.48, dd (15.3, 4.8) 3.28, dd (15.3, 8.1)	26.5	3.48, dd (15.3, 4.8) 3.28, dd (15.3, 8.1)	26.5
α	4.23, dd, (8.1, 4.9)	53.2	4.19, dd (8.1, 4.8)	53.5	4.22, dd (8.1, 4.9)	53.4
1'	4.04, s	40.8	4.04, s	41.2	4.03, s	41.0
2'	-	138.5	-	141.4	-	141.8
3'	7.21, dd (8.6, 5.5)	129.9	7.19, d (8.3)	130.1	7.14, d (8.3)	130.4
4'	6.96, dd (9.1, 8.6)	114.3	7.23, d (8.3)	128.1	7.38, d (8.3)	131.1
5'	-	161.3 d. (240.3)	-	131.1	-	119.4

*NMR assignment of these compounds has been reported previously; = COSY correlations; = HMBC correlations.

Table S6. Summary of NMR chemical shift assignment of the alkyl-7-hydroxy-K252c analogues in Acetone-d6 (500 MHz). Where δ_H and δ_C values are in ppm and coupling constant, *J* is in Hz.

Structure	6 H		6		6	
1	HO 7 N 5 0 4'		HO_{1}		$HO_{12}TNO 4' 7'$ 8 73 4c 4 1' 7' 6'	
COSY	9 $7a$ $4c$ 4 $1'$ $3'$ $5'$					
НМВС		2	9 10 4b 2 3 5		9 (C) (4a) 2 5'	
Correlation	11 H H 1 12 13		11a N N 13a 2 H H			
1	57		58		12 13	
Compound					59	
Position	δH, multi (J)	δC	δH, multi (J)	δC	δH, multi (J)	δC
1	7.53, d (8.1)	111.2	7.53, d (8.0)	110.9	7.54, d (8.3)	110.9
2	7.26, dd (8.1,	126.7	7.26, dd (8.0, 1.8)	126.3	7.28, dd (8.3, 1.8)	126.1
	1.8)					
3	-	132.7	-	132.7	-	132.8
4	9.18, d (1.8)	125.4	9.18, d (1.8)	125.2	9.20, d (1.8)	124.9
4a	-	123.6	-	123.6	-	123.7
4b	-	116.3	-	116.3	-	116.31
4c	-	n.f.	-	135.1	-	n.f.
5	-	n.f.	-	n.f.	-	n.f.
6	7.72, s	-	7.72, s	-	7.72, s	-
7	6.57, d (10.6)	79.6	6.56, d (5.4)	79.4	6.59, d (8.6)	79.3
7-OH	5.24, d (10.6)	-	5.24, d (5.4)	-	5.24, d (8.6)	-
7a	-	n.f.	-	118.6	-	118.6
7b	-	n.f.	-	115.7	-	115.8
7c	-	122.9	-	122.9	-	122.9
8	8.49, d (7.9)	123.7	8.50, d (7.8)	123.4	8.49, d (7.9)	123.4
9	7.30-7.26, m	120.4	7.30-7.26, m	119.9	7.31-7.27, m	120.0
10	7.46-7.42, m	125.7	7.45-7.41, m	125.3	7.46-7.42, m	125.3
11	7.67, d (7.9)	111.8	7.66, d (8.0)	111.5	7.66, d (8.1)	111.5
11a	-	140.1	-	140.1	-	140.1
12	11.08, s	-	11.14, s	-	11.03, s	-
12a	-	n.f.	-	n.f.	-	n.f.
13	10.85, s	-	10.91, s	-	10.81, s	-
13a	-	138.5	-	138.6	-	138.6
1'	3.54, d (7.3)	34.9	3.55, d (7.2)	34.5	3.57, d (7.4)	33.9
2'	5.46, t (7.3)	125.4	5.48, t (7.2)	123.5	5.43, t (7.4)	122.9
3'	-	130.9	-	136.6	-	142.3
4'	1.82, s	17.3	1.82, s	15.7	2.11, q (7.6)	29.2
5'	1.76, s	25.6	2.07, q (7.4)	32.5	2.28, q (7.6)	23.1
6'	-	-	1.04, t (7.4)	12.6	1.09, t (7.6)	12.6
7'	-	-	-	-	1.04, t (7.6)	12.5

*NMR assignment of these compounds has been reported previously; — = COSY correlations; — = HMBC correlations.

Structure	6 H		6 H		6 H	7'
/	HOwtN		HO_7N5=O	5' 6'	HO_7N_0	4' 8'
COSY	$9 \begin{array}{c} 7_{a} \\ 7_{a} \\ 7_{c} \\ 7_{b} \\ 4_{b} \\ 4_{a} \\ 4_{a} \\ 3 \end{array}$	4	7_a 4_c 4_a 3_c 7_c 7_b 4_b 4_a 3_c	1 3'4'	$\begin{array}{c} \begin{array}{c} 8 \\ 9 \\ \hline \end{array} \begin{array}{c} 7c \\ 7c \\ \hline \end{array} \begin{array}{c} 7b \\ \hline \end{array} \begin{array}{c} 4c \\ 4a \\ \hline \end{array} \begin{array}{c} 4a \\ \hline \end{array} \begin{array}{c} 4a \\ \hline \end{array} \begin{array}{c} 3 \\ \hline \end{array} \end{array}$	2 5' 6'
HMBC		5' 6' 7'		2		2
Correlation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\begin{array}{c} 1 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $		11 H H 1 12 13	
	60		12 13 61		62	
Compound	5 11	50		50	5 11	50
Position	OH, MUITI (J)	00	OH, MUITI (J)	00		00
1	7.53 (0, (8.2)	110.8	7.55, 0 (8.3)	111.0	7.53, 0 (8.2)	110.9
2	7.26 d, (8.2)	126.6	7.26, 0 (8.3)	125.9	7.26, 0 (8.2)	126.4
3	-	131.1	-	132.1	-	132.7
4	9.16 (S)	125.9	9.16, S	124.9	9.17, S	125.1
4a	-	123.5	-	123.5	-	123.6
4b	-	116.3	-	115.9	-	116.2
4c	-	135.2	-	134.3	-	135.1
5	-	n.f.	-	n.f.	-	n.t.
6	7.75 (s)	-	7.66, s	-	7.73, s	-
7	6.57 (d, (8.1)	79.4	6.55, d (8.3)	79.4	6.56, d (9.0)	79.3
7-OH	5.24 (d, (8.1)	-	5.28, d (8.3)	-	5.24, d (9.0)	-
7a	-	118.5	-	118.1	-	118.5
7b	-	115.7	-	115.3	-	115.6
7c	-	122.9	-	122.9	-	122.9
8	8.49 (d, (7.9)	123.4	8.46, d (7.9)	123.3	8.48, d (7.9)	123.3
9	7.29 (dd, (7.9, 7.6)	119.8	7.25, dd (7.9, 7.7)	119.7	7.28, t (7.9)	119.9
10	7.44 (dd, (8.1, 7.6)	125.2	7.42, dd (8.3, 7.7)	125.1	7.43, t (7.6)	125.3
11	7.66 (d, (8.1)	111.5	7.67, d (8.3)	111.6	7.66, d (8.1)	111.4
11a	-	140.1	-	140.4	-	140.1
12	11.02 (s)	-	12.24, s	-	11.16, s	-
12a	-	n.f.	-	127.3	-	126.9
12b	-	n.f.	-	n.f.	-	128.6
13	10.81 (s)	-	11.96, s	-	10.92, s	-
13a	-	n.f.	-	138.8	-	138.5
1'	3.43 (s)	44.9	3.51, d (7.3)	36.3	3.53, d (7.5)	33.6
2'	-	138.2	5.57, tp (7.3, 2.4)	120.4	5.39, t (7.5)	121.5
3'	5.52 (s)	122.2	-	142.7	-	139.1
4'	2.05 – 2.00 (m)	25.4	2.42, td (7.3, 2.4)	28.9	2.15, t (5.5)	37.3
5'	2.00 – 1.91 (m)	27.9	2.29, td (7.3, 2.4)	33.7	2.37, t (5.2)	28.6
6'	1.81 – 1.38 (m)	22.8	1.74, p (7.3, 6.9)	26.2	1.73 – 1.51, m	27.7
7'	1.81 – 1.38 (m)	22.8	1.64, p (7.3, 6.9)	26.4	1.73 – 1.51, m	28.6
8'	-	-	-	-	1.73 – 1.51, m	26.8

n.f. = Not found; exec.=exchangeable

Table S7: Values used to generate Figure 3 obtained from two experimental replicates.

Alkyl-PP analogue	% Conversion
1	94 ± 8
2	77 ±2
3	66 ± 8
4	40 ± 16
5	42 ± 4
6	52 ± 5
7	70 ±16
8	78 ± 10
9	41 ± 8
10	1 ± 0
13	1 ± 1
14	0.5 ± 0.1
15	0.9 ± 0.1
16	1 ± 0.8
17	84 ± 9
18	38 ± 11
19	54 ±9
20	22.4 ± 0.6
21	0.7 ± 0.0
22	100.0 ± 0.0
24	94 ± 8
25	46 ± 15
27	70 ± 13
28	60 ± 2
29	61 ± 4

Figure S5: Anticancer activity of alkyl-7-hydroxy-K252c analogues. Individual cytotoxicity curves (duplicate) for the 7-hydroxy-K252c parent compound (**56**) and analogues (**57-62**) in HCT-116 cells. (**B**) Cytotoxicity curves for the 7-hydroxy-K252c parent compound and analogues (**56-62**) in HCT-116 cells. Error bars represent standard deviation within one independent experiment.

Supporting Information for

FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products

Chandrasekhar Bandari,^{†a} Erin M. Scull,^{†a} Tejaswi Bavineni,^a Susan L. Nimmo,^a Eric D. Gardner,^a Ryan C. Bensen,^a Anthony W. Burgett,^a and Shanteri Singh^{*a}

Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

E-mail: shanteri.singh@ou.edu

Table of contents

1. NMR and HRMS data of 35	S3-6
2. NMR and HRMS Data of 36	S7-10
3. NMR and HRMS Data of 37	S11-14
4. NMR and HRMS Data of 42	S15-19
5. NMR and HRMS Data of 43	S20-24
6. NMR and HRMS Data of 38	S25-29
7. NMR and HRMS Data of 44	S30-33
 HRMS Data of 6-Trp₂ 	S34
9. NMR and HRMS Data of 40	S35-38
10. HRMS Data of 41	S39
11. NMR and HRMS Data of 45	S40-42
12. HRMS Data of 8-Trp ₂	S43
13. NMR and HRMS Data of 46	S44-48
14. NMR and HRMS Data of 9-Trp ₂	S49
15. NMR and HRMS Data of 53	S50-54
16. HRMS Data of 17-Trp₂	S55
17. NMR and HRMS Data of 47	S56-58
18. NMR and HRMS Data of 54	S59-61
19. HRMS Data of 19-Trp₂	S62
20. NMR and HRMS Data of 55	S63-67
21. HRMS Data of 20-Trp₂	S68
22. HRMS Data of 10-Trp	S69
23. HRMS Data of 13-Trp	S70

24. HRMS Data of 14-Trp	S71
25. HRMS Data of 15-Trp	S72
26. HRMS Data of 16-Trp	S73
27. HRMS Data of 21-Trp	S74
28. NMR and HRMS Data of 48	S75-78
29. NMR and HRMS Data of 39	S79-83
30. NMR and HRMS Data of 49	S84-88
31. NMR and HRMS Data of 50	S89-93
32. NMR and HRMS Data of 51	S94-98
33. NMR and HRMS Data of 52	S98-103
34. HRMS Data of 56	S104
35. NMR and HRMS Data of 57	S105-109
36. NMR and HRMS Data of 58	S110-114
37. NMR and HRMS Data of 59	S115-119
38. NMR and HRMS Data of 60	S120-124
39. NMR and HRMS Data of 61	S125-129
40. NMR and HRMS Data of 62	S130-134
41. NMR and HRMS data of 5	S135-137
42. NMR and HRMS data of 9	S138-140
43. NMR and HRMS data of 22	S141-143
44. NMR and HRMS data of 23	S144-146
45. NMR and HRMS data of 24	S147-149
46. NMR and HRMS data of 25	S150-152
47. NMR and HRMS data of 26	S153-155
48. NMR and HRMS data of 27	S156-158
49. NMR and HRMS data of 28	S159-161
50. NMR and HRMS data of 29	S162-164
51. NMR and HRMS data of 30	S165-167
52. NMR and HRMS data of 31	S168-170
53. NMR and HRMS data of 32	S171-173
54. NMR and HRMS data of 33	S174-176
55. NMR and HRMS data of 34	S177-179

 ^1H NMR Spectrum (500 MHz) of compound 35 in DMSO-d_6

2D $^1\text{H-}{}^1\text{H}$ COSY NMR spectrum (500 MHz) of 35 in DMSO-d_6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **35** in DMSO-d₆

HRMS spectrum of 35

 ^1H NMR Spectrum (500 MHz) of compound 36 in DMSO-d_6

2D $^{1}\text{H-}^{1}\text{H}$ COSY NMR spectrum (500 MHz) of **36** in DMSO-d₆

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **36** in DMSO-d₆

HRMS spectrum of 36

¹H NMR Spectrum (500 MHz) of compound **37** in DMSO-d₆

2D $^{1}\text{H-}^{1}\text{H}$ COSY NMR spectrum (500 MHz) of **37** in DMSO-d₆

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **37** in DMSO-d₆

HRMS spectrum of 37

 ^1H NMR Spectrum (500 MHz) of compound **42** in MeOH-d_4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **42** in MeOH-d₄

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **42** in MeOH-d₄

2D $^1\text{H-}{}^{13}\text{C}$ HMBC NMR spectrum (500 MHz) of 42 in MeOH-d_4

HRMS spectrum of 42

 ^1H NMR spectrum (500 MHz) of 43 in MeOH-d_4

S21

2D $^1\text{H-}{}^{13}\text{C}$ HSQC NMR spectrum (500 MHz) of 43 in MeOH-d_4

2D $^1\text{H-}{}^{13}\text{C}$ HMBC NMR spectrum (500 MHz) of 43 in MeOH-d_4

HRMS spectrum of 43

¹H NMR Spectrum (500 MHz) of compound **38** in MeOH-d₄ (*C4*^N isomer + 20% unknown isomer)

2D ¹H-¹H COSY NMR spectrum (500 MHz) of compound **38** in MeOH-d₄ (*C4*^N isomer + 20% unknown isomer)

2D $^1\text{H-}{}^{13}\text{C}$ HSQC NMR spectrum (500 MHz) of 38 in MeOH-d_4

2D $^1\text{H-}{}^{13}\text{C}$ HMBC NMR spectrum (500 MHz) of 38 in MeOH-d_4

HRMS spectrum of 38

¹H NMR Spectrum (500 MHz) of compound **44** in DMSO-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **44** in DMSO-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **44** in DMSO-d6

HRMS spectrum of 44

ample Name nj Vol ata Filename		TRP-26 5 112816SS082.d	Position InjPosition	P1-C8 drugC18_pos_ms.m		Instrument Name SampleType Comment		Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 11/29/2016 3:20:56 A
			ACQ Method							
x10 6 2.9-	+ES	3I Scan (rt: 3	.785 min) Frag=	180.0V	11281659	3082.d	Subtract			
2.8-										
2.7-										
2.6-					313	1911				
2.5-					0.0.					
2.4-										
2.3-										
2.2-										
2.1-										
2-										
1.9-										
1.8-										
1.7-										
1.6-										
1.5-										
1.4-										
1.3-										
1.2-										
1.1-										
1-										
0 9-										
0.8-										
0.7-										
0.6-										
0.5						31	4.1945			
0.0										
0.4										
0.3										
0.2-							315	.1970		
0								<u> </u>		

HRMS of 6-Trp₂

¹H NMR Spectrum (500 MHz) of compound **40** in DMSO-d6 ($C4^{N}$ isomer + 30% $C5^{N}$ isomer)

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **40** in DMSO-d6 (*C4*^N isomer + 30% *C5*^N isomer)

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **40** in DMSO-d6 (*C4*^N isomer + 30% *C5*^N isomer)

HRMS spectrum of 40

HRMS of 41

 ^1H NMR Spectrum (500 MHz) of compound 45 in $D_2\text{O}$

2D 1 H- 1 H COSY NMR spectrum (500 MHz) of **45** in D₂O

HRMS spectrum of 45

HRMS of 8-Trp₂

¹H NMR Spectrum (500 MHz) of compound **46** in MeOH d4.

2D $^{1}\text{H-}^{1}\text{H}$ COSY NMR spectrum (500 MHz) of **46** in MeOH-d₄

2D $^{1}\text{H-}^{13}\text{C}$ HSQC NMR spectrum (500 MHz) of **46** in MeOH-d₄

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **46-** in MeOH-d₄

HRMS spectrum of 46

HRMS spectrum of 9-Trp2

¹H NMR Spectrum (500 MHz) of compound **53** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **53** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **53** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **53** in MeOH-d4

HRMS spectrum of 53

HRMS of 17-Trp₂

¹H NMR Spectrum (500 MHz) of compound **47** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **47** in MeOH-d4

HRMS spectrum of 47

¹H NMR Spectrum (500 MHz) of compound **54** in DMSO-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **54** in DMSO-d6

HRMS spectrum of 54

HRMS of 19-Trp₂

¹H NMR Spectrum (500 MHz) of compound **55** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **55** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **55** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **55** in MeOH-d4

HRMS spectrum of **55**

HRMS of 20-Trp₂

HRMS spectrum of **10-Trp**

HRMS spectrum of 13-Trp

HRMS spectrum of 14-Trp

HRMS spectrum of 15-Trp

HRMS spectrum of 16-Trp

HRMS spectrum of 21-Trp

1D ¹H-NMR spectrum (500 MHz) of **48** in DMSO-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **48** in DMSO-d6

2D ¹H-¹³C COSY NMR spectrum (500 MHz) of **48** in DMSO-d6

1D ¹H-NMR spectrum (500 MHz) of **39** in MeOH-d₄

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **39** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **39** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **39** in MeOH-d4

1D ¹H-NMR spectrum (500 MHz) of **49** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **49** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **49** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **49** in MeOH-d4

1D ¹H-NMR spectrum (500 MHz) of **50** in MeOH-d₄

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **50** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **50** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **50** in MeOH-d4

S93

1D ¹H-NMR spectrum (500 MHz) of **51** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **51** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **51** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **51** in MeOH-d4

1D ¹H-NMR spectrum (500 MHz) of **52** in MeOH-d4

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **52** in MeOH-d4

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **52** in MeOH-d4

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **52** in MeOH-d4

HRMS spectrum of 56

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **57** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **57** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **57** in Acetone-d6

HRMS spectrum of 57

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **58** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **58** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **58** in Acetone-d6

HRMS spectrum of 58

¹H NMR Spectrum (500 MHz) of compound **59** in Acetone-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **59** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **59** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **59** in Acetone-d6

HRMS spectrum of 59

¹H NMR Spectrum (500 MHz) of compound **60** in Acetone-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **60** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **60** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **60** in Acetone-d6

HRMS spectrum of 60

¹H NMR Spectrum (500 MHz) of compound **61** in Acetone-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **61** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **61** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **61** in Acetone-d6

HRMS spectrum of 61

¹H NMR Spectrum (500 MHz) of compound **62** in Acetone-d6

2D ¹H-¹H COSY NMR spectrum (500 MHz) of **62** in Acetone-d6

2D ¹H-¹³C HSQC NMR spectrum (500 MHz) of **62** in Acetone-d6

2D ¹H-¹³C HMBC NMR spectrum (500 MHz) of **62** in Acetone-d6

7_HSQC

HRMS spectrum of 62

¹H NMR Spectrum (400 MHz) of compound **5** in D_2O

 ^{31}P NMR Spectrum (162 MHz) of compound **5** in D₂O

HRMS spectrum of 5

¹H NMR Spectrum (400 MHz) of compound **9** in D_2O

 ^{31}P NMR Spectrum (162 MHz) of compound 9 in $D_2\text{O}$

¹H NMR Spectrum (400 MHz) of compound **22** in D_2O

 ^{31}P NMR Spectrum (162 MHz) of compound 22 in $D_2\text{O}$

 ^1H NMR Spectrum (400 MHz) of compound 23 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound **23** in D₂O

 ^1H NMR Spectrum (400 MHz) of compound 24 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound 24 in $D_2\text{O}$

 ^1H NMR Spectrum (400 MHz) of compound 25 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound 25 in $D_2\text{O}$

HRMS spectrum of 25

 ^1H NMR Spectrum (400 MHz) of compound 26 in $D_2\text{O}$

³¹P NMR Spectrum (162 MHz) of compound **26** in D₂O

 ^1H NMR Spectrum (400 MHz) of compound 27 in $D_2\text{O}$

³¹P NMR Spectrum (162 MHz) of compound **27** in D₂O

 ^1H NMR Spectrum (400 MHz) of compound 28 in $D_2\text{O}$

³¹P NMR Spectrum (162 MHz) of compound **28** in D₂O

HRMS spectrum of 28

 ^1H NMR Spectrum (400 MHz) of compound 29 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound **29** in D₂O

HRMS spectrum of 29

¹H NMR Spectrum (400 MHz) of compound **30** in D_2O

 ^{31}P NMR Spectrum (162 MHz) of compound 30 in $D_2\text{O}$

HRMS spectrum of 30

 ^1H NMR Spectrum (400 MHz) of compound 31 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound **31** in D_2O

HRMS spectrum of 31

 ^1H NMR Spectrum (400 MHz) of compound 32 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound 32 in $D_2\text{O}$

HRMS spectrum of 32

 ^1H NMR Spectrum (400 MHz) of compound 33 in $D_2\text{O}$

 ^{31}P NMR Spectrum (162 MHz) of compound 33 in $D_2\text{O}$

HRMS spectrum of 33

S178

HRMS spectrum of 34