Importance of Lipophilicity for Potent Anti-Herpes Simplex Virus-1 Activity of α-Hydroxytropolones

Alex J. Berkowitz,^{a,b} Abaigeal D. Franson,^c Andreu Gazquez Cassals,^c Kate A. Donald,^c Alice J. Yu,^c Aswin K. Garimallaprabhakaran,^a Lynda A. Morrison,^{*c,d} Ryan P. Murelli^{*a,b}

^aDepartment of Chemistry, Brooklyn College, The City University of New York, Brooklyn College, Brooklyn, NY ^bPhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY ^cDepartment of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO ^dDepartment of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO

Supporting Information

Table of Contents

I. General Informations-1
II. Biaryl αHT Synthesis IIa. Synthesis and characterization of 8-oxabicyclo[3.2.1]octenes
General Synthesis and Procedures
3-methoxy-5-methyl-6-(3-(naphthalen-1-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2a)s-3
3-methoxy-5-methyl-6-(3-(naphthalen-2-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2b)s-3
3-methoxy-5-methyl-6-(4-(naphthalen-2-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2c)s-4
IIb Synthesis and characterization of biaryl α-hydroxytropolones via TfOH/HBr/AcOH
General Synthesis and Procedures
2,7-dihydroxy-4-methyl-5-(3-(naphthalen-1-yl)phenyl)cyclohepta-2,4,6-trien-1-one (235)s-5
2,7-dihydroxy-4-methyl-5-(3-(naphthalen-2-yl)phenyl)cyclohepta-2,4,6-trien-1-one (233)s-6
2,7-dihydroxy-4-methyl-5-(4-(naphthalen-2-yl)phenyl)cyclohepta-2,4,6-trien-1-one (234)s-6
III. Synthesis and characterization of pyrene-1-carbonyl α HT (360)
1-(pyren-1-yl)prop-2-yn-1-one (S3)
6-(3a ¹ ,6-dihydropyrene-1-carbonyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S5)
2,7-dihydroxy-4-methyl-5-(pyrene-1-carbonyl)cyclohepta-2,4,6-trien-1-one (360)s-8
IV. Aliphatic ketone a HT Synthesis
IVa Synthesis and characterization of hentane ketone a HT (380)
3-methoxy-5-methyl-6-octanoyl-8-oxabicyclo[3 2 1]octa-3 6-dien-2-one (S6)
2 7-dihydroxy-4-methyl-5-octanoylcyclohenta-2 4 6-trien-1-one (380)
IVb. Synthesis and characterization of nonane ketone α HT (792)
Dodec-1-yn-3-one (S7)s-10
6-decanoyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S8)s-11
4-decanoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (792).
IVc. Synthesis and characterization of undecane ketone α HT (351)
6-(dodecanoyl)-3-methoxy-5-methyl-8-oxabicyclo [3.2.1] octa-3,6-dien-2-one (S9)s-12
4-dodecanoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (351)s-12

IVd. Synthesis and characterization of tridecane ketone αHT (381)	
3-methoxy-5-methyl-6-tetradecanoyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S10)	s-13
2,7-dihydroxy-4-methyl-5-tetradecanoylcyclohepta-2,4,6-trien-1-one (381)	s-13

V. Synthesis and characterization of biphenyl sulfonyl αHT (337)

4-(ethynylsulfonyl)-1,1'-biphenyl (S11a)	s-14
6-([1,1'-biphenyl]-4-ylsulfonyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S12)	s-15
4-([1,1'-biphenyl]-4-ylsulfonyl)-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (337)	s-15

VI. NMR Spectra of new compounds.....s-16

I. General Information

All starting materials and reagents were purchased from commercially available sources and used without further purification. Hydroxytropolones tested in the manuscript that are not described in the following supporting information have been reported previously.¹ ¹H NMR shifts are measured using the solvent residual peak as the internal standard (CDCl₃ δ 7.26), and reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, dd = doublet of doublet, q = quartet, m = multiplet), coupling constant (Hz), and integration. ¹³C NMR shifts are measured using the solvent residual peak as the internal standard (CDCl₃ δ 77.16), and reported as chemical shifts. Infrared (IR) spectral bands are characterized as broad (br), strong (s), medium (m), and weak (w). Microwave reactions were performed via the Biotage Initiator 2.5. Purification via column chromatography was performed on the Biotage Isolera Prime, with Biotage SNAP 10g cartridges, in a solvent system of ethyl acetate and hexanes. Reversed-phase chromatography was also performed on the Biotage Isolera Prime, with Biotage SNAP 12g C₁₈ cartridges, in a solvent system of acetonitrile and water, with each containing .05% trifluoroacetic acid.

<u>II. Biaryl αHT Synthesis</u>

Ha. Synthesis and characterization of 8-oxabicyclo[3.2.1]octenes (s2a-c)

General Procedure. To a solution of 8-oxabicyclo[3.2.1]octene **1a-b** in acetonitrile (.03M) was added palladium(II) acetate (0.5 equiv) and sSPhos (1 equiv). The reaction mixture was stirred at room temperature for 5 minutes at

¹ Please see: Lomonosova, E.; Daw, J.; Garimallaprabhakaran, A. K.; Agyemang N. B.; Ashani, Y.; Murelli, R. P.; Tavis, J. E. *Antiviral Res.* **2017**, *144*, 164-172 and references therein.

which point a solution of napthylboronic acid (10 equiv) and potassium carbonate (10 equiv) in H₂O (.02M with respect to 8-oxabicyclo[3.2.1]octene) was added. The reaction mixture was then heated in a 50 °C mineral oil bath for 2.5 hours and was subsequently allowed to cool to room temperature and concentrated *in vacuo* to remove acetonitrile. To the concentrated solution was added sat. NaCl (aq), and the organic material was extracted with CHCl₃ (3x). The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield crude 8-oxabicyclo[3.2.1]octene **S2a-c**. The reaction mixture was then loaded directly onto column for chromatography and purified.

3-methoxy-5-methyl-6-(3-(naphthalen-1-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2a). To a solution

of 6-(3-bromophenyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one $1a^2$ (25 mg, 0.078 mmol) in acetonitrile (2.5 mL) was added palladium(II) acetate (8.6 mg, 0.039 mmol) and sSPhos (40 mg, 0.078 mmol). The reaction mixture was stirred at room temperature for 5 minutes at which point a solution of 1-napthylboronic acid (134 mg, 0.78 mmol) and potassium carbonate (108 mg, 0.78 mmol) in H₂O (5 mL) was added. The reaction mixture was then heated in a 50 °C mineral oil bath for 2.5 hours and was subsequently allowed to cool to room temperature and

concentrated *in vacuo* to remove acetonitrile. To the concentrated solution was added sat. NaCl (aq) (10 mL), and the organic material was extracted with CHCl₃ (3 x 10 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield crude 3-methoxy-5-methyl-6-(3-(naphthalen-1-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (2a). The reaction mixture was purified by chromatography (Biotage Isolera Prime, 10 g silica gel column, solvent gradient: 0% EtOAc in hexanes (3 CV); 0-50% EtOAc in hexanes (35 CV)). Product fractions were concentrated to yield **S2a** as a clear oil (8 mg, 28% yield). Rf= 0.34 in 30% EtOAc in hexanes. **IR (thin film, KBr)** 3053 (w), 2954 (w), 2930 (m), 2850 (w), 1710 (s), 1605 (m), 1341 (w), 1173 (w), 1131 (m), 1057 (w), 989 (w), 865 (m), 779 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.84 (m, 3H), 7.57 – 7.36 (m, 8H), 6.37 (d, *J* = 2.5 Hz, 1H), 6.16 (s, 1H), 5.01 (d, *J* = 2.5 Hz, 1H), 3.56 (s, 3H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.94, 158.70, 146.12, 141.40, 139.60, 133.97, 133.10, 131.64, 130.54, 128.96, 128.59, 128.19, 127.43, 127.10, 126.42, 126.13, 125.79, 125.57, 125.19, 123.56, 119.22, 86.54, 85.98, 54.90, 22.31. HRMS (ESI+) *m*/z calc'd for C₂₅H₂₀O₃Na⁺: 391.1305. Found: 391.1307.

3-methoxy-5-methyl-6-(3-(naphthalen-2-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2b). To a solution of 6-(3-bromophenyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one 1a (25 mg, 0.078 mmol) in acetonitrile (2.5 mL) was added palladium(II) acetate (8.6 mg, 0.039 mmol) and sSPhos (40 mg, 0.078 mmol). The reaction mixture was stirred at room temperature for 5 minutes at which point a solution of 2-napthylboronic acid (134 mg, 0.78 mmol) and potassium carbonate (108 mg, 0.78 mmol) in H₂O (5 mL) was added. The reaction mixture was then heated in a 50 °C mineral oil bath for 2.5 hours and was subsequently allowed to cool to room temperature and concentrated *in vacuo* to remove acetonitrile. To the concentrated solution was

² Williams, Y. D.; Meck, C.; Mohd, N.; Murelli, R. P. J. Org. Chem., 2013, 78, 11707–11713.

added sat. NaCl (aq) (10 mL), and the organic material was extracted with CHCl₃ (3 x 10 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield crude 3-methoxy-5-methyl-6-(3-(naphthalen-1-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (2a). The reaction mixture was purified by chromatography (Biotage Isolera Prime, 10 g silica gel column, solvent gradient: 0% EtOAc in hexanes (3 CV); 0-50% EtOAc in hexanes (35 CV)). Product fractions were concentrated to yield **S2b** as a yellow oil (13 mg, 45% yield). Rf= 0.28 in 30% EtOAc in hexanes. **IR (thin film, KBr)** 3052 (w), 2940 (w), 2936 (m), 2838 (w), 1709 (s), 1604 (m), 1438 (w), 1342 (w), 1269 (w), 1173 (w), 1130 (s), 1059 (w), 987 (w), 856 (m), 796 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 1H), 7.97 – 7.87 (m, 3H), 7.73 – 7.68 (m, 2H), 7.61 (m, 1H), 7.56 – 7.48 (m, 3H), 7.29 (m, 1H), 6.39 (d, J = 2.5 Hz, 1H), 6.23 (s, 1H), 5.03 (d, J = 2.5 Hz, 1H), 3.62 (s, 3H), 1.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.96, 158.83, 146.12, 142.05, 138.08, 133.79, 133.74, 132.90, 129.33, 128.81, 128.34, 128.01, 127.84, 126.67, 126.39, 126.15, 125.53, 125.42, 124.84, 123.64, 119.25, 86.62, 86.01, 54.92, 22.36. HRMS (ESI+) *m/z* calc'd for C₂₅H₂₀O₃Na⁺; 391.1305. Found: 391.1307.

3-methoxy-5-methyl-6-(4-(naphthalen-2-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S2c). To a solution

of 6-(4-bromophenyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one $1b^3$ (25 mg, 0.078 mmol) in acetonitrile (2.5 mL) was added palladium(II) acetate (8.6 mg, 0.039 mmol) and sSPhos (40 mg, 0.078 mmol). The reaction mixture was stirred at room temperature for 5 minutes at which point a solution of 2-napthylboronic acid (134 mg, 0.78 mmol) and potassium carbonate (108 mg, 0.78 mmol) in H₂O (5 mL) was added. The reaction mixture was then heated in a 50 °C mineral oil bath for 2.5 hours and was subsequently allowed to cool to room temperature and concentrated *in vacuo* to remove acetonitrile. To the concentrated solution was added sat. NaCl (aq) (10 mL), and the organic material was extracted with CHCl₃ (3 x 10 mL). The combined

organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to yield crude 3-methoxy-5-methyl-6-(3-(naphthalen-1-yl)phenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (2a). The reaction mixture was purified by chromatography (Biotage Isolera Prime, 10 g silica gel column, solvent gradient: 0% EtOAc in hexanes (3 CV); 0-50% EtOAc in hexanes (35 CV)). Product fractions were concentrated to yield **S2c** as a pale yellow solid (19 mg, 66% yield). MP= 197-200°C. Rf= 0.26 in 30% EtOAc in hexanes. **IR (thin film, KBr)** 3053 (w), 2940 (w), 2931 (w), 2833 (w), 1710 (s), 1600 (m), 1499 (w), 1437 (w), 1341 (w), 1264 (w), 1173 (m), 1131 (s), 1057 (w), 988 (w), 863 (m), 818 (m), 732 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.04 (m, 1H), 7.97 – 7.85 (m, 3H), 7.77 – 7.72 (m, 3H), 7.55 – 7.47 (m, 2H), 7.45 – 7.39 (m, 2H), 6.36 (d, *J* = 2.6 Hz, 1H), 6.24 (s, 1H), 5.03 (d, *J* = 2.5 Hz, 1H), 3.63 (s, 3H), 1.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.91, 158.47, 146.11, 141.60, 137.64, 133.75, 132.91, 132.08, 128.76, 128.35, 127.81, 127.77, 126.64, 126.60, 126.34, 125.93, 125.29, 123.11, 119.18, 86.52, 85.97, 54.86, 22.34. HRMS (ESI+) *m/z* calc'd for C₂₅H₂₀O₃Na⁺: 391.1305. Found: 391.1303.

³ Tavis, J. E.; Morrison, L. A.; Murelli, R. P. Preparation of Hydroxylated Tropolone Inhibitors of Nucleotidyl Transferases in Treatment of Herpesvirus and Hepatitis B. U. S. Patent WO 2016201243, Dec 15, 2016.

IIb. Synthesis and characterization of biaryl a-hydroxytropolones via TfOH/HBr/AcOH

General Procedure. To a solution of 8-oxabicyclo[3.2.1]octene S2a-c in CHCl₃ (0.1 M) was added triflic acid (4 equiv). The mixture was stirred for 30 minutes at room temperature before quenching with an equivalent volume of pH 7 phosphate buffer. Extraction with CHCl₃ followed by concentration under reduced pressure isolated the methoxytropolone. To this compound was added HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120°C for 2 hours. The reaction mixture was then quenched with pH 7 phosphate buffer and filtered. The precipitate was azeotroped with CHCl₃ (3x) and concentrated under reduced pressure to afford α -hydroxytropolone 233-235.

2,7-dihydroxy-4-methyl-5-(3-(naphthalen-1-yl)phenyl)cyclohepta-2,4,6-trien-1-one (235). To a solution of

bicycle **S2a** (7 mg, 0.019 mmol) in CHCl₃ (190 μ L) was added triflic acid (6.7 μ L, 0.076 mmol). The mixture was stirred for 30 minutes at room temperature before quenching with an equivalent volume of pH 7 phosphate buffer. Extraction with CHCl₃ followed by concentration under reduced pressure isolated the methoxytropolone. To this compound was added 285 μ L of a solution of HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120°C for 2 hours. The reaction mixture was then quenched with pH 7 phosphate buffer and filtered. The

precipitate was azeotroped with CHCl₃ (3x) and concentrated under reduced pressure to yield **235** as a brown oil (5.1 mg, 76% yield over two steps). **IR (thin film, KBr)** 3236 (br), 3052 (w), 2917 (w), 2846 (w), 1700 (s), 1634 (w), 1617 (w), 1559 (m), 1520 (w), 1388 (w), 1279 (w), 1224 (m), 1125 (w), 1086 (w), 797 (m), 668 (m) cm⁻¹. ¹H **NMR (400 MHz, CDCl₃)** δ 8.07 (s, 1H), 7.96 – 7.85 (m, 4H), 7.77 – 7.75 (m, 2H), 7.62 – 7.49 (m, 6H), 2.34 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 167.36, 157.85, 156.58, 144.32, 143.70, 141.68, 139.14, 137.91, 133.78, 132.90, 129.29, 128.75, 128.34, 127.81, 127.39, 127.34, 126.82, 126.60, 126.32, 126.10, 125.50, 124.43, 124.22, 26.68. **HRMS (ESI+)** *m/z* calc'd for C₂₄H₁₉O₃⁺: 355.1329. Found: 355.1258.

2,7-dihydroxy-4-methyl-5-(3-(naphthalen-2-yl)phenyl)cyclohepta-2,4,6-trien-1-one (233). To a solution of

bicycle **S2b** (19 mg, 0.0516 mmol) in CHCl₃ (516 μ L) was added triflic acid (18.2 μ L, 0.206 mmol). The mixture was stirred for 30 minutes at room temperature before quenching with an equivalent volume of pH 7 phosphate buffer. Extraction with CHCl₃ followed by concentration under reduced pressure isolated the methoxytropolone. To this compound was added 500 μ L of a solution of HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120°C for 2 hours. The reaction mixture was then quenched with pH 7 phosphate buffer and filtered. The precipitate was azeotroped with CHCl₃ (3x) and concentrated under reduced pressure to yield

233 as a black oil (8 mg, 44% yield over two steps). **IR (thin film, KBr)** 3240 (br), 3045 (w), 2919 (w), 2846 (w), 1700 (s), 1653 (m), 1506 (m), 1437 (w), 1387 (m), 1223 (m), 1124 (w), 1088 (w), 798 (m), 667 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.96 – 7.86 (m, 3H), 7.76 (m, 2H), 7.62 – 7.50 (m, 7H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.29, 157.87, 156.60, 144.32, 143.72, 141.68, 139.17, 137.91, 133.77, 132.90, 129.29, 128.76, 128.34, 127.81, 127.39, 127.34, 126.83, 126.61, 126.32, 126.10, 125.50, 124.46, 124.25, 26.69. HRMS (ESI+) *m/z* calc'd for C₂₄H₁₉O₃⁺: 355.1329. Found: 391.1330.

2,7-dihydroxy-4-methyl-5-(4-(naphthalen-2-yl)phenyl)cyclohepta-2,4,6-trien-1-one (234). To a solution of

bicycle **S2c** (13 mg, 0.0353 mmol) in CHCl₃ (350 μ L) was added triflic acid (12.5 μ L, 0.141 mmol). The mixture was stirred for 30 minutes at room temperature before quenching with an equivalent volume of pH 7 phosphate buffer. Extraction with CHCl₃ followed by concentration under reduced pressure isolated the methoxytropolone. To this compound was added 500 μ L of a solution of HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120°C for 2 hours. The reaction mixture was then quenched with pH 7 phosphate buffer and filtered. The precipitate was azeotroped with CHCl₃ (3x) and concentrated under reduced pressure to yield crude **3c** as a black oil. The product was purified via chromatography (Biotage Isolera Prime, 12

g C₁₈ reversed-phase silica gel column, solvent gradient: 10% acetonitrile in H₂O (3 CV); 10-75% acetonitrile in H₂O (25 CV); 100% acetonitrile (10 CV)). Product fractions were concentrated to yield **234** as a yellow oil (1 mg, 8% yield over two steps). **IR (thin film, KBr)** 3251 (br), 2925 (w), 2844 (w), 1700 (m), 1653 (m), 1512 (m), 1387 (w), 1135 (w), 1088 (w), 811 (w), 668 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.97 – 7.88 (m, 3H), 7.82 – 7.78 (m, 2H), 7.61 (s, 1H), 7.57 – 7.50 (m, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 2.34 (s, 3H). **Partial** ¹³C NMR (100 MHz, CDCl₃) δ 143.57, 140.65, 137.82, 133.82, 132.91, 129.04, 128.76, 128.38, 127.84, 127.67, 126.60, 126.31, 126.04, 125.48, 26.69. HRMS (ESI+) *m/z* calc'd for C₂₄H₁₉O₃⁺: 355.1329. Found: 391.1332

III. Synthesis and characterization of pyrene-1-carbonyl αHT (360)

1-(pyren-1-yl)prop-2-yn-1-one (S3). Pyrene-1-carboxylic acid (5g, 20mM, 1eq) was stirred with thionyl chloride (2 eq) for an hour at room temperature. After removing the thionyl chloride under reduced pressure, the crude reaction mixture was taken to next step as such. Closely following literature precedent,⁴ in a round bottom flask, to a solution of acid chloride in CH_2Cl_2

(0.06M), TMS acetylene (2.1g, 22 mmol, 1.1 eq) is added. The flask was cooled to 0 $^{\circ}$ C, then AlCl₃ (9.36g, 70mmol, 3.2 eq) is added with vigorous stirring and left at 0 $^{\circ}$ C for 30 minutes. Then, the temperature was raised to room temperature, for 30 minutes. The reaction was quenched with 2M HCl and extracted with CH₂Cl₂. The organic layers were washed twice with saturated NaHCO₃ solution, followed by brine wash. After drying with Na₂SO₄, organic layers were filtered and concentrated under reduced pressure, to be used as such in next step (Crude yields >100%).

6-(3a¹,6-dihydropyrene-1-carbonyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S5). To a

solution of (1R, 2S, 6S, 7R)-6,9-dimethoxy-4,7-dimethyl-3,11dioxatricyclo[5.3.1.12,6]dodeca-4,8-diene-10,12-dione **S4**⁵ (280 mg,1mmol, 1 eq) in CDCl₃ (0.5 M, 2 mL) in a sealed tube, was added crude alkynone **S3** (2000mg, 8mmol, 8 eq). After stirring at 120 °C, for 3 hours in an oil bath, the solvent was evaporated and crude material loaded onto column cartridge using 1-1.5 mL toluene, was purified by chromatography (Biotage Isolera Prime, SNAP 10g silica gel, 18cm x 1.8cm, solvent gradient: 5% EtOAc in

hexanes (100 mL); 10% EtOAc in hexanes (200 mL); 20% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **S5** as a pale yellow solid (434 mg, 1.1mmol, 55 % yield). **MP:** 202-205 °C. **IR (ATR, ZnSe)** 3041 (w), 3011(w), 2977 (w), 2932 (w), 1708(s), 1638(s), 1605(s), 1587(s), 1501(m), 1447(w), 1380(w), 1179(w), 1124(s), 1057(m), 981(w), 908(s), 844(s). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 9.3 Hz, 1H), 8.25 (d, *J* = 7.7

⁴ Schubert, T.; Werner, H.; Maria-Regina, K.; Müller, M. Eur. J. Org. Chem. 2001, 22, 4181–4187.

⁵ Meck, C.; Mohd, N.; Murelli, R. P. Org. Lett. 2012, 14, 5988–5991.

Hz, 2H), 8.17 (ddd, J = 13.8, 9.5, 7.0 Hz, 4H), 8.10 – 8.00 (m, 2H), 6.65 (d, J = 2.5 Hz, 1H), 6.42 (s, 1H), 5.16 (d, J = 2.5 Hz, 1H), 3.67 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.88, 188.58, 157.96, 145.29, 140.46, 134.20, 131.07, 130.55, 129.97, 129.77, 129.74, 127.75, 127.09, 126.62, 126.60, 126.37, 124.92, 124.23, 124.19, 123.76, 120.27, 86.90, 86.58, 54.87, 21.16. HRMS (ESI+): m/z calc'd for C₂₆H₁₈O₄H⁺: 395.1278. Found: 395.1293.

2,7-dihydroxy-4-methyl-5-(pyrene-1-carbonyl)cyclohepta-2,4,6-trien-1-one (360). A solution of BCl₃ (1.0 M in

CH₂Cl₂, 2.1 mL, 2.1 mmol, 7 eq) was diluted with CH₂Cl₂ (0.21M, 10 mL) and cooled to 0°C. In a separate round bottom flask, **S5** (120 mg, 0.30 mmol, 1 eq) was dissolved in CH₂Cl₂ (0.028M, 10mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 minutes of stirring at 0 °C, the reaction mixture was quenched with H₂O (20 mL), stirred for 2 minutes at 0 °C, and then warmed to room temperature where it continued to stir for 1 hour. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 2-

hydroxy-7-methoxy-5-methyl-4-(pyrene-1-carbonyl)cyclohepta-2,4,6-trien-1-one (100 mg, 0.25mmol). The methoxytropolone was immediately transferred to a round bottom flask, fitted with reflux condenser and base trap, and a 33% HBr in acetic acid (0.09 M) was added to flask. The reaction was stirred at 120 °C for 1 hour. After 1 hour, reaction mixture was let to cool to room temperature. The reaction mixture was further cooled to 0 °C, to which phosphate buffer solution (pH =7), diluted with ice cold water was added. On standing at below 0° C, a greenish yellow precipitate was filtered with a fritted funnel and dried under reduced pressure to yield **360** (23mg, 0.06 mmol, 23% yield) as a greenish-yellow solid. **MP**: >290 °C. **IR (ATR, ZnSe)** 3333 (br), 2919 (w), 2849 (w), 1617(s), 1657 (s), 1587 (s), 1498 (m), 1383(m), 1291(w), 1209(s), 1188(m), 1075(m), 908(s), 834(s) cm⁻¹. ¹**H NMR (400 MHz, CDCl₃)** δ 9.34 (d, *J* = 9.4 Hz, 1H), 8.40 – 8.30 (m, 3H), 8.26 (d, *J* = 9.0 Hz, 1H), 8.16 – 8.07 (m, 3H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.58 (s, 1H), 7.53 (s, 1H), 2.42 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 199.52, 168.34, 158.79, 156.92, 141.91, 138.79, 135.25, 131.39, 131.02, 130.95, 130.78, 130.50, 130.09, 128.81, 127.11, 126.87, 126.77, 125.18, 124.62, 124.59, 124.10, 124.03, 119.87, 24.82. **HRMS (ESI+)**: *m/z* calc'd for C₂₅H₁₆O₄H⁺: 381.1121. Found: 381.1118

IV. Aliphatic ketone a HT Synthesis

General Alkynone Procedure. In a round bottom flask, to a solution of acid chloride (1.0 eq) in CH_2Cl_2 (0.056 M), TMS acetylene (1.1 eq) is added. The flask was cooled to 0 °C, then AlCl₃ (14-28 mmol, 3.1 eq) is added with vigorous stirring and left at 0 °C for 30 minutes. Then, the temperature was raised to room temperature, for 30 minutes. The reaction was quenched with 2M HCl and extracted with CH_2Cl_2 . The organic layers were washed twice with saturated NaHCO₃ solution, followed by brine wash. After drying with Na₂SO₄, organic layers were filtered and concentrated under reduced pressure, to be used as such in next step (Crude yields 80->100%).

IVa. Synthesis and characterization of heptane ketone αHT (380)

3-methoxy-5-methyl-6-octanoyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S6). To a solution of (1R, 2S, 6S, 7R)-

6,9-dimethoxy-4,7-dimethyl-3,11-dioxatricyclo[5.3.1.12,6]dodeca-4,8-diene-10,12-dione **S4** (280 mg, 1 mmol, 1 eq) in CDCl₃ (0.5 M, 2 mL) in a sealed tube, was added crude alkynone **S13** (1.2 g, 8 mmol, 8 eq). After stirring at 120 °C, for 30 minutes under microwave irradiation, the solvent was evaporated and crude material loaded onto column cartridge using 1-1.5 mL toluene, was purified by chromatography (Biotage Isolera Prime, SNAP 10g silica gel, 18cm x 1.8cm, solvent

gradient: 5% EtOAc in hexanes (100 mL); 10% EtOAc in hexanes (200 mL); 20% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **S6** as a pale brown oil (406 mg, 70% yield). ¹H NMR (400 MHz, **CDCl₃**) δ 6.99 (d, J = 2.5 Hz, 1H), 6.10 (s, 1H), 5.04 (d, J = 2.6 Hz, 1H), 3.53 (s, 3H), 2.74 – 2.56 (m, 2H), 1.71 (s, 3H), 1.67 – 1.50 (m, 3H), 1.28 (dd, J = 8.8, 4.7 Hz, 6H), 0.87 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.20, 188.74, 155.93, 144.80, 137.56, 119.63, 85.97, 85.68, 54.43, 39.95, 31.44, 28.89, 28.86, 23.89, 22.39, 21.02, 13.88. HRMS (ESI+): m/z calc'd for C₁₇H₂₄O₄Na⁺:315.1567. Found: 315.1571. 2,7-dihydroxy-4-methyl-5-octanoylcyclohepta-2,4,6-trien-1-one (380). A solution of BCl₃ (1.0 M in CH₂Cl₂,

0.93-1.19 mL, 0.93-1.19 mmol, 7 eq) was diluted with CH_2Cl_2 (0.18M, 5 mL) and cooled to 0 °C. In a separate round bottom flask, **S6** (50 mg, 0.17 mmol, 1 eq) was dissolved in CH_2Cl_2 (0.028M, 5mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 minutes of stirring at 0 °C, the reaction mixture was quenched with H_2O (10 mL), stirred for 2 minutes at 0 °C, and then warmed to room temperature where it continued to stir for 1 hour. The organic layer was isolated

and the aqueous layer was extracted with CH₂Cl₂ (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield a mixture of hydroxytropolone and methoxytropolone. This mixture was added to a round bottom flask fitted with reflux condenser and base trap, and a 33% HBr in acetic acid (0.09 M) was added to flask, and the reaction was heated to 120 °C for 1 hour. After 1 hour, reaction mixture was let to cool to room temperature. The reaction mixture was further cooled to below 0 ° C, to which phosphate buffer solution (pH =7), diluted with ice cold water was added. On standing at below 0°C, a brown precipitate was filtered with a fritted funnel and dried under reduced pressure. They were further purified using reverse phase column chromatography conditions (Biotage Isolera Prime, SNAP 12g C18 silica gel column, solvent gradient: 2-85% acetonitrile in water (35 CV); acetonitrile and water each contained 0.05% TFA)). Crude material loaded onto column cartridge using 1-1.5 mL DMSO. Product fractions were concentrated to yield **380** (2.1 mg, 4.4 % yield). **IR** (**ATR, ZnSe**) 3080 (w), 2960 (br), 2922 (br), 2849 (br), 1696(s), 1647 (s), 1538(s), 1511 (s), 1057(m), 896(w) cm⁻¹. ¹H NMR (**400 MHz, CDCl₃**) δ 7.47 (s, 1H), 7.28 (s, 1H), 2.78 (t, *J* = 7.4 Hz, 2H), 2.39 (s, 3H), 1.70 (d, *J* = 7.4 Hz, 3H), 1.42 – 1.14 (m, 8H), 0.97 – 0.66 (m, 5H). **Partial** ¹³C NMR (100 MHz, CDCl₃) δ 117.43, 43.19, 31.64, 29.71, 29.15, 29.06, 24.29, 23.83, 22.60, 14.06. HRMS (ESI+): *m/z* calc'd for C₁₆H₂₃O₄Na⁺: 279.1591. Found: 279.1589.

IVb. Synthesis and characterization of nonane ketone αHT (792)

Dodec-1-yn-3-one (S7). To a solution of decanoyl chloride (919 μ L, 5.24 mmol) in CH₂Cl₂ (87 mL) was added trimethylsilyl acetylene (800 μ L, 5.77 mmol), and the mixture was cooled to 0 °C. To this mixture was added aluminum chloride (2.24 g, 16.77 mmol) was added, and the

mixture was stirred at 0 °C for 30 min. The solution was then allowed to come to rt, at which point it was stirred for an additional 30 min. The reaction was quenched with 30 mL of 2M HCl, and extracted with CH_2Cl_2 (3 x 20 mL). The combined organics were dried over Na_2SO_4 , filtered, and concentrated *en vacuo* to yield crude **S7** as an orange oil (84% crude yield). The crude alkynone was used without further purification in the next step.

6-decanoyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S8). To a solution of dimer S4 (69 mg,

.25 mmol) in CDCl₃ (500 μ L) was dodec-1-yn-3-one **S7** (355 mg, 1.97 mmol). The reaction mixture was subjected to microwave irradiation at 120 °C for 30 min, at which point the solution was concentrated *en vacuo*. The residue was then dissolved in ~1 mL of CH₂Cl₂, and subjected to normal-phase column

chromatography conditions (Biotage Isolera Prime, SNAP 10g silica gel column, solvent gradient: 5% EtOAc in hexane (6 CV); 10% EtOAc in hexane (12 CV); 20% EtOAc in hexane (12 CV); 100% EtOAc (5 CV)). Product fractions were concentrated *en vacuo* to yield **S8** as a yellow oil (126.3 mg, 79% yield). Rf= 0.15 in 10% EtOAc in hexanes. **IR (thin film, KBr)** 2926 (s), 2855 (m), 1715 (s), 1671 (m), 1610 (m), 1456 (m), 1376 (w), 1342 (w), 1128 (s), 1049 (w), 989 (w), 868 (m), 656 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, *J* = 2.6 Hz, 1H), 6.09 (s, 1H), 5.02 (d, *J* = 2.6 Hz, 1H), 3.51 (s, 3H), 2.70 – 2.60 (m, 2H), 1.69 (s, 3H), 1.60 – 1.51 (m, 2H), 1.27 – 1.22 (m, 12H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.48, 189.06, 156.26, 145.06, 137.61, 119.84, 86.27, 85.91, 54.74, 40.27, 31.92, 29.47, 29.46, 29.32, 29.23, 24.17, 22.73, 21.30, 14.18. HRMS (ESI+) *m/z* calc'd for C₁₉H₂₈O₄Na⁺: 343.1880. Found: 343.1862.

4-decanoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (792). A solution of bicycle S8 (66.1 mg, 0.206 M_{e} M_{e}

°C. To this mixture was added H₂O (10 mL), and the solution was stirred for 2 minutes at 0 °C. The reaction was then allowed to come to rt and stirred for an additional 60 minutes. The organic layer was pipetted out, extracted with CH₂Cl₂ (3 x 5 mL), and concentrated *en vacuo* to yield the methoxytropolone as an orange solid. To this compound was added 2.3 mL of a solution of HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120 °C for 1 hour. The reaction mixture was then quenched with pH 7 phosphate buffer, and extracted with CH₂Cl₂ (3 x 15 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated *en vacuo* to yield crude **S9** as a brown oil. This residue was then dissolved in methanol (5 mL), and washed with hexane (3 x 2 mL). The methanol layer was then concentrated *en vacuo* to yield **792** as a brown oil (7 mg, 11% yield over two steps). **IR (thin film, KBr)** 3234 (br), 2954 (s), 2854 (m), 1705 (s), 1608 (w), 1533 (m), 1457 (w), 1395 (m), 1283 (w), 1157 (w), 1132 (m), 1065 (s), 897 (m), 722 (m), 669 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.28 (s, 1H), 2.78 (t, *J* = 7.4 Hz, 2H), 2.39 (s, 3H), 1.73 – 1.68 (m, 2H), 1.28 – 1.24 (m, 12H), 0.90 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.81, 168.19, 158.74, 157.37, 142.06, 137.32, 124.87, 117.85, 43.33, 31.99, 31.74,

29.54, 29.39, 29.33, 24.43, 23.97, 22.81, 14.25. **HRMS (ESI+)** *m/z* calc'd for C₁₈H₂₇O₄⁺: 307.1904. Found: 307.1890.

IVc. Synthesis and characterization of undecane ketone αHT (351)

6-(dodecanoyl)-3-methoxy-5-methyl-8-oxabicyclo [3.2.1] octa-3,6-dien-2-one (S9). To a solution of dimer S4

(280 mg, 1 mmol, 1 eq) in CDCl₃ (0.5 M, 2 mL) in a sealed tube, was added crude alkynone **S14** (1.66 g, 8 mmol, 8 eq). After stirring at 120 ^oC for 30 minutes under microwave irradiation, the solvent was evaporated and crude material loaded onto column cartridge using 1-1.5 mL toluene, was purified by chromatography (Biotage Isolera Prime, SNAP 10g silica gel, 18cm x 1.8cm, solvent gradient: 5% EtOAc in hexanes (100 mL); 10% EtOAc in hexanes (200 mL); 20% EtOAc

in hexanes (200 mL)). Product fractions were concentrated to yield **S9** (400 mg, 1.15 mmol, 57%) as a pale brown solid. MP= 59-62 °C. **IR (ATR, ZnSe)** 3087 (w), 2919 (br), 2950 (br), 2852 (br), 1711 (s), 1666 (s), 1608 (s), 1456 (s), 1377(m), 1118(s), 1051(m), 987(m), 859(m), 841(m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 2.6 Hz, 1H), 6.11 (s, 1H), 5.05 (d, *J* = 2.6 Hz, 1H), 3.54 (s, 3H), 2.75 – 2.58 (m, 2H), 1.72 (s, 3H), 1.66 – 1.51 (m, 2H), 1.40 – 1.13 (m, 18H),0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.32, 188.90, 156.16, 144.97, 137.49, 119.70, 86.16, 85.82, 54.63, 40.16, 31.87, 29.56, 29.41, 29.36, 29.30, 29.13, 24.06, 22.65, 21.20, 14.09. HRMS (ESI+): *m/z* calc'd for C₂₁H₃₂O₄H⁺: 349.2373. Found: 349.2363.

4-dodecanoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (351). A solution of BCl₃ (1.0 M in CH₂Cl₂,

1.3 mL, 1.3 mmol, 7 eq) was diluted with CH_2Cl_2 (13 mL) and cooled to 0°C. In a separate round bottom flask, **S9** (64 mg, 0.18 mmol, 1 eq) was dissolved in CH_2Cl_2 (13 mL), was cooled to 0°C and was added to the diluted BCl₃ solution. After 10 minutes of stirring at 0°C, the reaction mixture was quenched with H_2O (10 mL), stirred for 2 minutes at 0°C, and then warmed to room temperature where it continued to stir for 1 hour. The organic layer was

isolated and the aqueous layer was extracted with CH_2Cl_2 (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield a mixture of hydroxytropolone and methoxytropolone. This mixture was added to a round bottom flask fitted with reflux condenser and base trap, and a 33% HBr in acetic acid (0.09 M) was added to flask, and the reaction was heated to 120 °C for 1 hour. After 1 hour, reaction mixture was let to cool to room temperature. The reaction mixture was further cooled to below 0 ° C, to which phosphate buffer solution (pH =7), diluted with ice cold water was added. On standing at below 0°C, a brown precipitate was filtered with a fritted funnel and dried under reduced pressure. They were further purified using reverse phase column chromatography conditions (Biotage Isolera Prime, SNAP 12g C18 silica gel column, solvent gradient: 2-85% acetonitrile in water (35 CV); acetonitrile and water each contained 0.05% TFA)). Crude material loaded onto column cartridge using 1-1.5 mL DMSO to yield **351** (7.6 mg, 6% yield) as a pale brown solid. MP= 62-65 °C. **IR** (ATR, ZnSe) 3233 (w), 2955 (br), 2922 (br), 2852 (br), 1688 (s), 1555 (s), 1503 (s), 1468 (w), 1403 (w), 1290 (m), 1223(m), 1162(s), 1098(m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.28 (s, 1H), 2.78 (t, *J* = 7.4 Hz, 2H), 2.39 (s, 3H), 1.76 - 1.62 (m, 2H),1.40 - 1.17 (m, 18H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

206.65, 168.11, 158.58, 157.22, 141.90, 137.13, 124.67, 117.65, 43.18, 31.90, 29.58, 29.44, 29.39, 29.32, 29.19, 24.28, 23.83, 22.68, 14.11. **HRMS (ESI+)**: m/z calc'd for C₂₀H₃₀O₄H⁺: 335.2217. Found: 335.2216.

IVd. Synthesis and characterization of tridecane ketone α HT (381)

3-methoxy-5-methyl-6-tetradecanoyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S10). To a solution of dimer S4

(280 mg, 1 mmol, 1 eq) in CDCl₃ (0.5 M, 2 mL) in a sealed tube, was added crude alkynone **S15** (1.88 g, 8 mmol, 8 eq). After stirring at 120 $^{\circ}$ C, for 30 minutes under microwave irradiation, the solvent was evaporated and crude material loaded onto column cartridge using 1-1.5 mL toluene, was purified by chromatography (Biotage Isolera Prime, SNAP 10g silica gel, 18cm x 1.8cm, solvent gradient: 5% EtOAc in hexanes (100 mL); 10% EtOAc in hexanes (200 mL); 20% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield S10 as a pale brown solid (360 mg, 48%

yield). IR (ATR, ZnSe) 3090(w), 2959 (br), 2922 (br), 2855 (br), 1711(s), 1663 (s), 1605(s), 1447 (br), 1374 (br), 1337(w), 1285(m), 1124(s), 1045(m), 984(m), 911(s), 862(m), 847(w) cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 1H), 6.09 (d, J = 1.2 Hz, 1H), 5.10 – 4.96 (m, 1H), 3.60 – 3.43 (m, 3H), 2.65 (dd, J = 11.0, 3.8 Hz, 2H), 1.70 (d, J = 1.2 Hz, 1H), 5.10 – 4.96 (m, 1H), 3.60 – 3.43 (m, 3H), 2.65 (dd, J = 11.0, 3.8 Hz, 2H), 1.70 (d, J = 1.0, 3.8 Hz, 3.8 1.6 Hz, 3H), 1.59 (s, 2H), 1.23 (s, 21H), 0.91 – 0.75 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.59, 189.17, 156.44, 145.24, 137.73, 119.96, 86.42, 86.09, 54.90, 40.43, 32.16, 29.91, 29.88, 29.83, 29.68, 29.62, 29.59, 29.40, 24.32, 22.93, 21.47, 14.36. **HRMS (ESI+)**: *m/z* calc'd for C₂₃H₃₆O₄Na⁺: 399.2506. Found: 399.2508.

2,7-dihydroxy-4-methyl-5-tetradecanoylcyclohepta-2,4,6-trien-1-one (381). A solution of BCl₃ (1.0 M in

CH₂Cl₂, 0.93-1.19 mL, 0.93-1.19 mmol, 7 eq) was diluted with CH₂Cl₂ (0.18M, 5 mL) and cooled to 0°C. In a separate round bottom flask, **S10** (50 mg, 0.13 mmol, 1 eq) was dissolved in CH₂Cl₂ (0.028M, 5mL), was cooled to 0°C and was added to the BCl₃ solution. After 10 minutes of stirring at 0°C, the reaction mixture was quenched with H₂O (10 mL), stirred for 2 minutes at 0°C, and then warmed to room temperature where it continued to stir for 1 hour.

The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield a mixture of hydroxytropolone and methoxy tropolone (39 mg crude yield). This mixture was added to a round bottom flask fitted with reflux condenser and base trap, and a 33% HBr in acetic acid (0.09 M) was added to flask, and the reaction was heated to 120 °C for 1 hour. After 1 hour, reaction mixture was let to cool to room temperature. The reaction mixture was further cooled to below 0 °C, to which phosphate buffer solution (pH =7), diluted with ice cold water was added. On standing at below 0°C, a brown precipitate was filtered with a fritted funnel and dried under reduced pressure. They were further purified using reverse phase column chromatography conditions (Biotage Isolera Prime, SNAP 12g C18 silica gel column, solvent gradient: 2-85% acetonitrile in water (35 CV); acetonitrile and water each contained 0.05% TFA)). Crude material loaded onto column cartridge using 1-1.5 mL DMSO. Product fractions were concentrated to yield **381** as a browl oil (8.7 mg, 0.024 mmol, 23 % yield). IR (ATR, ZnSe) 2950 (w), 2935 (br), 2901 (w), 2846 (br), 1702(s), 1538 (s), 1459 (s), 1383 (br), 1273(m), 1097(m), 914 (w) cm⁻¹. ¹H NMR (400 MHz, **CDCl**₃) δ 7.47 (s, 1H), 7.28 (s, 1H), 2.77 (t, *J* = 7.3 Hz, 2H), 2.39 (s, 3H), 1.69 (d, *J* = 7.1 Hz, 2H), 1.26 (s, 24H), 0.88 (t, J = 6.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 206.69, 168.25, 157.21, 141.88, 137.12, 124.66, 117.63, 77.34, 77.23, 77.03, 76.71, 43.19, 31.93, 29.67, 29.64, 29.59, 29.45, 29.40, 29.36, 29.20, 24.29, 23.83, 22.70, 14.13. HRMS (ESI+): m/z calc'd for $C_{22}H_{35}O_4^+$: 363.2530. Found: 363.2509.

V. Synthesis and characterization of biphenyl sulfonyl aHT (337)

4-(ethynylsulfonyl)-1,1'-biphenyl (S11a/b). To a solution of (1,1'-biphenyl)-4-sulfonyl chloride (1.0 g, 3.96 mmol)

in CH₂Cl₂ (12 mL) was added aluminum chloride (528 mg, 3.96 mmol). After stirring at rt for 30 min, bis(trimethylsilyl)acetylene (797 μ L, 3.96 mmol) was added, and the mixture was allowed to stir overnight at rt. The solution was then concentrated *en vacuo*, dissolved in ~1 mL of CH₂Cl₂, and subjected to normal-phase column

chromatography conditions (Biotage Isolera Prime, SNAP 10g silica gel column, solvent gradient: 100% hexane (7 CV); 5% EtOAc in hexane (12 CV); 10% EtOAc in hexane (1 CV); 20% EtOAc in hexane (16 CV); 100% EtOAc (15 CV)). Product fractions were concentrated *en vacuo* to yield a 70:30 mixture of **S11a** and **S11b** as an orange oil. The mixture was used without further purification in the following step.

6-([1,1'-biphenyl]-4-ylsulfonyl)-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (S12). To a solution

of dimer S4 (93 mg, .332 mmol) in CDCl₃ (664 μ L) was added 4-(ethynylsulfonyl)-1,1'-biphenyl S11a/b (112.7 mg, .465 mmol based on S11a). The reaction mixture was subjected to microwave irradiation at 120 °C for 30 min, at which point the solution was concentrated *en vacuo*. The residue was then dissolved in ~1 mL of CH₂Cl₂, and subjected to normal-phase column chromatography conditions (Biotage Isolera Prime, SNAP 10g silica gel column, solvent gradient: 5% EtOAc in hexane (13 CV); 10% EtOAc in hexane (11 CV); 20% EtOAc in hexane (5 CV); 25% EtOAc in hexane (6 CV); 100% EtOAc (5 CV)). Product fractions were concentrated en

vacuo to yield **S12** as a clear oil (63.5 mg, 36% yield based on S2a). **IR (ATR, ZnSe)** 2983 (w), 2937 (w), 2829 (w), 1720 (s), 1603 (s), 1475 (m), 1394 (m), 1312 (s), 1273 (w), 1158 (s), 1106 (s), 991 (m), 861 (m), 759 (m), 729 (m) cm⁻¹. ¹**H NMR (200 MHz, CDCl₃)** δ 7.95 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.63 – 7.44 (m, 5H), 6.98 (d, J = 2.5 Hz, 1H), 5.81 (s, 1H), 5.05 (d, J = 2.5 Hz, 1H), 3.43 (s, 3H), 1.70 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 187.17, 158.64, 147.52, 145.35, 138.77, 138.56, 137.23, 129.35, 129.13, 129.08, 128.17, 127.47, 118.99, 86.13, 85.69, 54.82, 21.51. HRMS (ESI+) m/z calc'd for C₂₁H₁₉O₅S⁺: 383.0948. Found: 383.0950.

4-([1,1'-biphenyl]-4-ylsulfonyl)-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trien-1-one (337).

To a solution of bicycle S12 (32 mg, 0.084 mmol) in CH₂Cl₂ (840 µL) was added triflic acid (29.5 µL, 0.335 mmol).

The mixture was stirred for 30 minutes at rt before quenching with 10 mL pH 7 phosphate buffer. Extraction with CH_2Cl_2 (3 x 5 mL) followed by concentration *en vacuo* isolated the methoxytropolone as an orange solid. To this compound was added 933 µL of a solution of HBr in AcOH (33%), and the solution was heated in a mineral oil bath at 120 °C for 1 hour. The reaction mixture was then quenched with pH 7 phosphate buffer, and extracted with CH_2Cl_2 (3 x 10 mL). The combined organics were dried over Na_2SO_4 , filtered, and concentrated *en vacuo* to yield **337** as a yellow oil (4.2 mg, 14% yield over two steps). **IR (thin film, KBr)** 3254 (br),

2924 (m), 1593 (w), 1549 (s), 1394 (m), 1314 (s), 1287 (s), 1159 (s), 1087 (m), 981 (w), 721 (w), 680 (m), 614 (m) cm⁻¹. ¹**H NMR (400 MHz, CDCl₃)** δ 8.75 (s, 1H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.61 – 7.56 (m, 2H), 7.50 – 7.42 (m, 4H), 2.64 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 168.76, 160.35, 155.89, 146.80, 142.49, 139.15, 139.06, 138.99, 129.29, 128.97, 128.26, 128.06, 127.51, 124.97, 119.77, 25.88. **HRMS (ESI+)** *m/z* calc'd for C₂₀H₁₇O₅S⁺: 369.0791. Found: 369.0787.

VI. NMR Spectra of new compounds (in order of table of contents)

¹³C NMR of S2a

¹H NMR of S2b

¹³C NMR of S2b

¹H NMR of S2c

¹³C NMR of S2c

¹H NMR of 235

s-18

¹³C NMR of 233

¹H NMR of 234

¹H NMR of S5

40

30 20

10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50

¹³C NMR of 380 (partial)

\G- -153-P1-13C.1.fid \G- -153-P1-13C	•	•			-117.67	•		£77.34	76.71	•		-43.19 [31.93	29.15	23.82	- 14.06	- 0.00	
HOO												•					
	4																
Me																	
									÷								· ·
														•			
						-	-						·	·			
			 	•				 					_لل_			j	
		 	 	1													
· · ·	·	 						 		•	•			•			· · ·

¹H NMR of S8

¹³C NMR of S8

¹³C NMR of 792

s-27

¹H NMR of S10

