Sirtuin inhibition and anti-cancer activities of ethyl 2benzimidazole-5-carboxylate derivatives

K. Y. Yeong^a*, M. I. H. Nor Azizi^a, N. Berdigaliyev^a, W.N. Chen^a, W. L. Lee^a*, A. N.

Shirazi^{b,c,d}, K. Parang^b

^aSchool of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia.

^bDepartment of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.

^cDepartment of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA.

^dCenter for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

Supporting information

Table of contents

- (i) Characterization data for the synthesized compounds.
- (ii) Supplementary NMR data (Figure S1-S7).
- (iii) Figure S8. Stability of BZD9Q1 in DMSO-0.01 M PBS pH 7.4 (5:95).
- (iv) Figure S9. BZD9Q1-NAD competition assay.
- (v) Table S1. Cell viability after different time point treatment of BZD9Q1 on H103 OSCC.

Characterization data for synthesized compounds

Ethyl 2-(4-chlorophenyl)-1H-benzo[d]imidazole-5-carboxylate (BZD9V1)

Yield: 85%. ¹H NMR (500 MHz; CD₃OD) : 1.43 (3H, t, J = 6.9 Hz), 4.38 (2H, q, J = 6.9 Hz), 7.56 (2H, d, J = 8.4 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.05 (1H, dd, J = 1.5 Hz, 8.4 Hz), 8.26 (1H, s). ¹³C NMR (125 MHz, CD₃OD): 14.69, 62.15, 125.43, 126.35, 128.64, 129.20, 129.52, 130.47, 137.94, 154.68, 168.46. ESI-MS: m/z 301.1 (100%); 303.1 (35%) [M+H]⁺. Anal. Calc. for C₁₆H₁₃N₂O₂Cl: C 63.89%; H 4.41%; N 9.32%. Found : C 63.90%; H 4.40%; N 9.30%.

Ethyl 2-(benzo[d][1,3]dioxol-5-yl)-1H-benzo[d]imidazole-5-carboxylate (BZD9Q1)

Yield: 85%. ¹H NMR (500 MHz; CD₃OD): 1.42 (3H, t, J = 7.2 Hz), 4.38 (2H, t, J = 7.2 Hz), 6.06 (2H, s), 6.99 (1H, d, J = 9 Hz), 7.55 (1H, s), 7.62 (1H, d, J = 9 Hz), 7.93 (1H, d, J = 9 Hz), 8.23 (1H, s). ¹³C NMR (125 MHz; CD₃OD): 14.70, 62.09, 103.31, 107.98, 108.24, 108.76, 109.79, 121.09, 122.82, 124.40, 125.96, 150.01, 151.50, 168.58. ESI-MS: m/z 312.1 (100%) [M+H]⁺. Anal. Calc. for C₁₇H₁₄N₂O₄: C 65.81%; H 4.60%; N 9.02%. Found : C 65.85%; H 4.64%, N 8.91%.

Ethyl 2-(4-bromophenyl)-1H-benzo[d]imidazole-5-carboxylate (BZD9D1)

Yield: 94%. ¹H NMR (300MHz; DMSO-d₆), δ (ppm): 8.20 (1H, Ar<u>H</u>, s), 8.13 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 7.86 (1H, Ar<u>H</u>, dd, J = 3.33 Hz, 8.40 Hz), 7.80 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 7.68 (1H, Ar<u>H</u>, d, J = 8.40 Hz), 4.34 (2H, C<u>H</u>₂, q, J = 7.10 Hz), 1.35 (3H, C<u>H</u>₃, t, J = 7.10 Hz). ESI-MS: m/z 344.1 (100%) [M]⁺; 346.1 (100%) [M+2]⁺. Anal. Calc. for C₁₆H₁₃N₂O₂Br: C 55.67%; H 3.80%; N 8.12%. Found : C 55.30%; H 3.74%, N 8.36%.

Ethyl 2-(4-(trifluoromethoxy)phenyl)-1H-benzo[d]imidazole-5-carboxylate (BZD9H1)

Yield: 77%. ¹H NMR (300MHz; DMSO-d₆), δ (ppm): 8.31 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 8.21 (1H, Ar<u>H</u>, s), 7.85 (1H, Ar<u>H</u>, dd, J = 3.33 Hz; 8.40 Hz), 7.70 (1H, Ar<u>H</u>, d, J = 8.40 Hz), 7.60 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 4.34 (2H, C<u>H₂</u>, q, J = 7.10 Hz), 1.36 (3H, C<u>H₃</u>, t, J = 7.10 Hz). ESI-MS: m/z 351.2 (100%) [M+H]⁺. Anal. Calc. for C₁₇H₁₃F₃N₂O₃: C 58.29%; H 3.74%; N 8.00%. Found : C 58.12%; H 3.62%, N 8.10%.

Ethyl 2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole-5-carboxylate (BZD9K1)

Yield: 63%. ¹H NMR (300MHz; DMSO-d₆), δ (ppm): 8.20 (1H, Ar<u>H</u>, s), 8.13 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 7.86 (1H, Ar<u>H</u>, dd, J = 3.33 Hz; 8.40 Hz), 7.80 (2H, Ar<u>H</u>, d, J = 8.40 Hz), 7.68 (1H, Ar<u>H</u>, d, J = 8.40 Hz), 4.34 (2H, C<u>H₂</u>, q, J = 7.10 Hz), 1.35 (3H, C<u>H₃</u>, t, J = 7.10 Hz). ESI-MS: m/z 335.2 (100%) [M+H]⁺. Anal. Calc. for C₁₇H₁₃F₃N₂O₂: C 61.08%; H 3.92%; N 8.38%. Found : C 61.34%; H 4.10%, N 8.16%.

Supplementary NMR data

Figure S1. ¹H NMR of BZD9V1

Figure S2. ¹³C NMR of BZD9V1

Figure S3. ¹H NMR of BZD9Q1.

Figure S4. ¹³C NMR of BZD9Q1

Figure S5. ¹H NMR of BZD9D1.

Figure S6. ¹H NMR of BZD9H1.

Figure S7. ¹H NMR of BZD9K1.

Figure S8. Stability of **BZD9Q1** in DMSO-0.01 M PBS pH 7.4 (5:95). HPLC analysis was performed on Agilent Infinity 1260 using Zorbax SB-C18 (4.6 x 250 mm, 5 micron) column. **BZD9Q1** retention time, t = 4.115 min; captured at 350 nm.

Figure S9. BZD9Q1-NAD competition assay. It was found that SIRT2 inhibition decreased with increasing concentrations of NAD⁺ (100, 200, 333, 500, 1000, 2000 μ M). The concentration of **BZD9Q1** used in the assay was 10 μ M.

	H103 Treatment		
	24 h GI ₅₀ (µM)	48 h GI ₅₀ (µM)	72 h GI ₅₀ (µM)
BZD9Q1	91	32	5.83
Cisplatin	19	7.21	5.35

 Table S1. Cell viability after different time point treatment of BZD9Q1 on H103 OSCC.