Synthesis of new lophine-carbohydrate hybrids as cholinesterase inhibitors: cytotoxicity evaluation and molecular modelling

João Paulo Bizarro Lopes ^a, Luana Silva ^a, Marco Antonio Ceschi ^{a*}, Diogo Seibert Lüdtke ^a, Aline Rigon Zimmer ^b, Thais Carine Ruaro.^b, Rafael Ferreira Dantas ^c, Cristiane Martins Cardoso de Salles ^d, Floriano Paes Silva-Jr^c, Mario Roberto Senger ^{c*}, ^{*}, Gisele Barbosa ^e, Lídia Moreira Lima ^{e*} Isabella Alvim Guedes ^f, Laurent Emmanuel Dardenne ^{f*}

^aInstituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil. ^bFaculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Bairro Petrópolis, 90610-000, Porto Alegre, RS, Brazil. ^cLaboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brazil. ^dInstituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, Campus Universitário, 23890-000, Seropédica, RJ, Brazil. ^eLaboratório Nacional

De Computação Científica-LNCC, Av. Getúlio Vargas, 333, Petrópolis, 25651-075, RJ, Brazil.

Supplementary Information

Property	Description						
#stars	Number of property or descriptor values that fall						
	outside the 95% range of similar values for known						
	drugs. A large number of stars suggests that a						
	molecule is less drug-like than molecules with few						
	stars.						
#rtvFG	Number of reactive functional groups that can lead						
	to false positives in HTS assays and to						
	decomposition, reactivity, or toxicity problems in						
C) 10	vivo.						
CNS	Predicted central nervous system activity on a -2						
	(inactive) to +2 (active) scale.						
	Molecular weight.						
donor_HB	Estimated number of nydrogen bonds that would be						
	aguague solution over a number of molecular						
	aqueous solution over a number of molecular						
acceptor HB	Estimated number of hydrogen bonds that would be						
	accented by the solute to water molecules in an						
	aqueous solution over a number of molecular						
	configurations						
OPlogPo/w	Predicted octanol/water partition coefficient						
OPlogS	Predicted aqueous solubility $\log S$ S in mol dm ⁻³ is						
	the concentration of the solute in a saturated solution						
	that is in equilibrium with the crystalline solid.						
CIQPlogS	Conformation-independent predicted aqueous						
	solubility, log S.						
QPlogHERG	Predicted IC ₅₀ value for blockage of HERG K ⁺						
	channels.						
QPPCaco	Predicted apparent Caco-2 cell permeability in						
	nm/sec. Caco-2 cells are a model for the gut-blood						
	barrier. QikProppredictions are for non-						
	activetransport.						
QPlogBB	Predicted brain/blood partition coefficient for orally						
	delivered drugs.						
QPPMDCK	Predicted apparent MDCK cell permeability in						
	nm/sec. MDCK cells are considered to be a good						
	Mimic for the blood-brain barrier.						
#matab	Number of likely metobolic resetions						
#inetab	Number of fikely metabolic feactions.						
PercenthumanOraiAosorption	The prediction is based on a quantitative multiple						
	linear regression model						
Ros	Number of violations of Lininski's rule of five						
	(Lipinski et al. 1997) The rules are mol MW<						
	$500 \text{ OP}\log \text{Po/w} < 5 \text{ donorHB} < 5 \text{ accntHB} < 10$						
	Compounds that satisfy these rules are considered						
	drug-like.						

Table S1. ADME properties computed by the QikProp tool.

Ro3	Number of violations of Jorgensen's rule of three.
	The three rules are: $QPlogS > -5.7$, $QP PCaco > 22$
	nm/s, # Primary Metabolites < 7. Compounds with
	fewer (and preferably no) violations of these rules
	are more likely to be orally available.

Table S2. Ensemble docking results for the lofine-carboidrate derivatives against the four AChE conformations and the BChE.

Compound	Carbabydrata	A	ChE	BChE	MeasuredAffinity^b			
(linkersize)	Carbonyurate	PDB	GlideScore ^a	GlideScore ^a	AChE	BChE		
7a (n = 4)	Xylose	4EY7	-8.553	-7.556	n.a.	0.295		
7b (n = 5)	Xylose	4EY7	-9.634	-8.283	n.a.	0.277		
7c (n = 6)	Xylose	1ZGC	-9.488	-7.674	n.a.	0.708		
7d (n = 7)	Xylose	1Q84	-10.493	-8.267	n.a.	0.399 1.300		
7e (n = 8)	Xylose	4EY7	-9.431	-8.650	n.a.			
8a (n = 6)	Ribose	2CKM	-8.674	-7.865	n.a.	0.396		
8b (n = 7)	Ribose	2CKM	-8.836	-7.882	2.75	0.499		
$9a \\ (n = 6)$	Galactose	4EY7	-9.768	-6.958	n.a.	0.174		
9b (n = 7)	Galactose	1ZGC	-11.236	-8.397	n.a.	0.619		
Bis(7)- tacrine	-	-12.02	6 (2CKM)	-6.434 (5K5E)	0.0019	0.0091		

^aGiven in kcal/mol. ^bGiven in µM.

molecule	#star	s#rtvF(GCNS	mol_MW	donorHI	B accptHB	QPlogPo/w	v QPlogS	CIQPlog	S QPlogHERC	GQPPCaco	QPlogBB	QPPMDCk	K#metał	PHOA	Ros	5 Ro3
7a	3	2	1	539,673	2	7,9	6,234	-6,952	-7,451	-8,408	933,666	-0,022	508,171	2	90,688	2	1
7e	6	2	1	595,78	2	7,9	7,354	-7,925	-8,595	-8,619	760,775	-0,401	407,269	2	95,66	2	1
8a	1	2	1	581,753	1	7,9	6,766	-5,816	-8,376	-7,223	1682,933	0,187	960,686	1	100	2	1
7d	7	2	1	581,753	2	7,9	7,276	-8,465	-8,308	-9,038	737,427	-0,392	393,776	2	94,958	2	1
9b	5	3	1	651,844	1	7,7	8,552	-8,518	-10,025	-8,054	1936,934	0,235	1118,322	1	100	2	1
8b	2	2	1	595,78	1	7,9	6,868	-5,209	-8,666	-6,607	2134,659	0,238	1242,209	1	100	2	0
9a	7	3	1	637,817	1	7,7	8,313	-8,932	-9,733	-8,622	1464,412	0,139	826,594	1	100	2	1
7c	4	2	1	567,727	2	7,9	6,656	-7,222	-8,022	-8,382	694,819	-0,301	369,243	2	90,863	2	1
7b	3	2	1	553,7	2	7,9	6,497	-7,586	-7,736	-8,718	552,946	-0,388	288,47	2	88,16	2	1
Bis(7)- tacrine	4	0	0	492,706	2	4	8,236	-9,876	-8,711	-7,493	4872,653	-0,435	2739,953	8	100	1	2
donepezil	0	0	1	379,498	0	5,5	4,427	-4,74	-4,338	-6,743	871,96	0,099	471,969	6	100	0	0
Reference	0 – 5	0-2	-2 (inactive), +2 (active)	130.0 – 725.0	0.0-6.0	2.0 – 20.0	-2.0-6.5	-6.5 - 0.5	-6.5 - 0.5	5 <-5	<25 poor, >500 great	-3.0- 1.2	<25 poor, >500 great	1 – 8	>80% is high <25% is poor	<=.	4<=3

Table S3. ADME properties predicted by QikProp for the lophine-carbohydrate derivatives, bis(7)-tacrine and donepezil.

Figure S2. ¹³C NMR Spectrum, APT (CDCl₃, 75 MHz) of compound 2a.

Figure S4. ¹³C NMR Spectrum, APT (DMSO-d6, 75 MHz) of compound 2b

Figure S6. ¹³C NMR Spectrum, APT (DMSO-*d6*, 75 MHz) of compound 2c.

Figure S8. ¹³C NMR Spectrum, APT (DMSO-*d6*, 75 MHz) of compound 2d.

Figure S10. ¹³C NMR Spectrum, APT (DMSO-*d6*, 75 MHz) of compound **2e**.

Figure S12. ¹³C NMR Spectrum, APT (CDCl₃, 75 MHz) of compound **3a**.

Figure S19. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound **3e**.

Figure S22. ¹³C NMR Spectrum (CDCl₃, 75 MHz) of compound **7a**.

Figure S23. IR Spectrum (KBr pellet) of compound 7a.

4000 3500 3000 2500 2000 1500 1000 500 Número de Onda (cm⁻¹)

Figure S26. IR Spectrum (KBr pellet) of compound 7b.

Figure S30. HMQC NMR Spectrum of compound 7c.

Figure S31. IR Spectrum (KBr pellet) of compound 7c.

Figure S32. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound 7d.

Figure S34. IR Spectrum (KBr pellet) of compound 7d.

Figure S35. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound 7e.

Figure S36. ¹³C NMR Spectrum (CDCl₃, 75 MHz) of compound **7e**.

Figure S37. IR Spectrum (KBr pellet) of compound 7e.

Figure S38. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound 8a.

Figure S40. IR Spectrum (KBr pellet) of compound 8a.

Figure S42. ¹³C NMR Spectrum (CDCl₃, 75 MHz) of compound 8b.

Figure S44. HMQC NMR Spectrum of compound 8b.

Figure S45. IR Spectrum (KBr pellet) of compound 8b.

Figure S46. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound **9a**.

Figure S49. HMQC NMR Spectrum of compound 9a.

Figure S50. IR Spectrum (KBr pellet) of compound 9a.

Figure S51. Comparison of ¹H-NMR spectra (CDCl₃, 300 MHz) of compounds 7c (D-xylose), 8b (D-ribose) and 9a (D-galactose).

Figure S52. ¹H NMR Spectrum (CDCl₃, 300 MHz) of compound **9b**.

Figure S54. IR Spectrum (KBr pellet) of compound 9b.

Figure S55.Cytotoxic evaluation on Vero cell line exposed to different concentrations of the compounds for 24 h. Dose-response curves of compounds **7b**, **8b**, **9a** and tacrine treatments on Vero cells (% of viable cells versus log[concentrations]).

Figure S56.Cytotoxic evaluation on HepG2 cell line exposed to different concentrations of the compounds for 24 h. Dose-response curves of compounds **7b**, **8b**, **9a** and tacrine treatments on HepG2 cells (% of viable cells versus log[concentrations]).

Figure S57.Cytotoxic evaluation on C6 cell line exposed to different concentrations of the compounds for 24 h. Dose-response curves of compounds **7b**, **8b**, **9a** and tacrine treatments on C6 cells (% of viable cells versus log[concentrations]).

Figure S58. Dose-response curves of lophine-carbohydrate hybrids derivatives on acetylcholinesterase (A) and butyrylcholinesterase (B) activity. Enzymatic assays were was described on materials and methods. Percent values were calculated using the mean of control group and data are expressed as mean \pm standard deviation of at least two independent experiments, each one in triplicate.