Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

The synthesis and biological evaluation of sanguinarine derivatives as

anti-non-small cell lung cancer agents

Liang Jiang[#], Xiaolu Wang[#], Yuting Wang, Fang Xu, Zhang Zhang^{*}, Ke Ding^{*}, Xiaoyun Lu^{*}

Contents o	of SI
------------	-------

1. General information	S1
2. Synthetic procedures and compound characterization	S1- S8
3. Materials and methods or biological studies	S8-S9
4. The ¹ H and ¹³ C NMR spectra of compounds	S10- S25
5. HPLC Purity Analysis	S26- S38

1. General information

All chemicals were purchased from commercial vendors and used without further purification, unless indicated otherwise. All reactions requiring anhydrous conditions were carried out under argon atmosphere using oven-dried glassware. AR-grade solvents were used for all reactions. Reaction progress was monitored by TLC on pre-coated silica plates (Merck 60 F254 nm, 0.25 μ m) and spots were visualized by UV, iodine or other suitable stains. Flash column chromatography was carried out using silica gel (Qingdao Ocean company). ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 MHz and 101 MHz, respectively. Coupling constants (*J*) are expressed in hertz (Hz). Chemical shifts (δ) of NMR are reported in parts per million (ppm) units relative to internal control (TMS). Mass spectra were obtained on Agilent LC-ESI-MS system. High resolution ESI-MS were recorded on an AB SCIEX X500r QTOF mass spectrometer. Purity of compounds was determined by reverse-phase high performance liquid chromatography (HPLC) analysis to be >95%. HPLC instrument: Dionex Summit HPLC (Column: Diamonsil C18, 5.0µm, 4.6×250 mm (Dikma Technologies); detector: PDA-100 photodiode array; inJector: ASI-100 autoinJector; pump: p-680A). A flow rate of 1.0 mL/min was used with mobile phase of MeOH in H₂O.

2 Synthetic procedures and compound characterization

naphtho[2,3-d][1,3]dioxole (4). Naphthalene-2,3-diol 2 (20 g, 125 mmol, 1.00 eq), CH₂Br₂ (25.4 mL, 361.8 mmol, 2.89 eq) and K₂CO₃ (50 g, 361.8 mmol, 2.89 eq) were suspended in DMF (600mL). The reaction mixture was stirred at 100 °C for 10 h. After cooling to rt, the reaction was poured into a mixture of EtOAc (800 mL) and H₂O (200 mL). The aqueous layer was removed and the organic layer was washed with H₂O (250 mL) and saturated NaCl (250 mL). The organic layer was dried over NaSO₄ and the solvents were removed under reduced pressure. Further column chromatography on silica gel (PE) afforded 4 (12.5 g, yield 58%) as a white solid. R_f = 0.25 (PE). ¹H NMR (400 MHz, Chloroform-d) δ 147.68, 130.59, 127.13, 124.49, 104.01, 101.11. Dept-135 (101 MHz, Chloroform-d) δ 127.03, 124.38, 103.90, 101.00.

4,4,5,5-tetramethyl-2-(naphtho[2,3-d][1,3]dioxol-6-yl)-1,3,2-dioxaborolane (5). Two-neck bottle was charged with naphtho[2,3-d][1,3]dioxole **4** (10 g, 58.2 mmol, 1 equiv), bis(pinacolato)diboron (14.78 g, 58.2 mmol, 1 equiv), [Ir(OMe)cod]₂ (580 mg, 0.87 mmol, 1.5 mol %), and 4,4'-di-tert-buty2,2'-bipyridine (470 mg, 1.75 mmol, 3 mol %) and flushed with argon. Then cyclohexane (160 mL) was added and the reaction was heated to reflux for 24 h and quenched by adding water (100 mL) dropwise. The mixture was then extracted with EtOAc (200 mL) twice and the combined organic phase was dried with Na₂SO₄ and concentrated under vacuum. Further column chromatography on silica gel (EtOAc: PE = 1: 50) afforded **5** (5.4 g, yield 31.1%) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 8.17 (s, 1H), 7.70 (dd, J = 8.1, 1.2 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H), 7.11 (s, 1H), 6.04 (s, 2H), 1.38 (s, 12H). MS (ESI): m/z Calcd for For C₁₇H₂₀BO₄ [M + H]⁺: 299.15, found 299.1.

5-(naphtho[2,3-d][1,3]dioxol-6-yl)benzo[d][1,3]dioxole-4-carbaldehyde (6). Compound **5** (3.2g, 18.7 mmol, 1.1 equiv), 5-bromobenzo[d][1,3]dioxole-4-carbaldehyde (3.9g, 17 mmol, 1.0 equiv) and Pd(PPh₃)₂Cl₂ (600 mg, 0.857 mmol, 0.05 equiv) were added together, then the tube was evacuated and backfilled with Argon for 3 times. DME (160 mL), 2.0 M aq. K₂CO₃ (33 mL) was then added by syringe under Argon. The mixture was stirred at 80°C for 4h and cooled to rt. EtOAc (200 mL) was added to the mixture and extracted with saturated NaCl twice. The organic phase was dried with Na₂SO₄ and concentrated under vacuum. Further column chromatography on silica gel (EtOAc: PE = 1:10) afforded **6** (4.2 g, yield 77.1%) as a faint yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.87 (s, 1H), 7.70 (d, *J* = 8.3 Hz, 1H), 7.60 (d, *J* = 1.8 Hz, 1H), 7.31 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.26 (s, 1H),

7.16 (s, 1H), 7.12 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.21 (s, 2H), 6.07 (s, 2H). MS (ESI): m/z Calcd for For C₁₉H₁₃O₅ [M + H]⁺: 321.08, found 321.1.

(E)-5-(naphtho[2,3-d][1,3]dioxol-6-yl)benzo[d][1,3]dioxole-4-carbaldehyde O-(4-(trifluoromethyl) benzoyl) oxime (7). A mixture of compound 6 (1.81 g, 5.66 mmol, 1.0 equiv), H₂NOH-HCl (472 mg, 6.8 mmol, 1.2 equiv) and pyridine (683 mg, 8.5 mmol, 1.5 equiv) in MeOH (60 mL) was stirred under reflux for 6 h. MeOH was then removed under vacuo and the residue was dissolved in EtOAc (150 mL) and extracted with 1.0 M aq. HCl (60 mL). Organic phase was then extracted with saturated NaCl (100 mL) twice, dried with Na₂SO₄ and concentrated under vacuum. The residue was then dissolved in dry CH₂Cl₂ (100 mL) and added Et₃N (860 mg, 8.5 mmol, 1.5 equiv). 4-(trifluoromethyl)-benzoylchlorid (1.42g, 6.8 mmol, 1.2 equiv) was then added dropwise at 0°C and stirred at 0°C for another 30 min. Then, the mixture was poured into saturated NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (100 mL) twice. The combined organic phases were then dried with Na₂SO₄ and concentrated under vacuum. Further column chromatography on silica gel (EtOAc : PE = 1:20) afforded compound 7 (1.4 g, yield 49.3%) as a white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.40 (s, 1H), 8.14 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 1.8 Hz, 1H), 7.15 (d, J = 8.3 Hz, 2H), 7.02 - 6.93 (m, 2H), 6.25 (s, 2H), 6.06 (s, 2H). MS (ESI): m/z Calcd for For C₂₇H₁₆F₃NNaO₆ [M + H]⁺: 530.08, found 529.7

[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridine (8). A 25 mL round bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with 7 (1.3g, 2.56 mmol, 1.0 equiv), fac-Ir(ppy)₃ (50 mg, 0.0256 mmol, 0.01 equiv). The flask was evacuated and backfilled with Ar for 3 times. DMF (20 mL) was then added by syringe under Argon. The mixture was then irradiated by a 5W white LEDs strip. After the reaction was complete (as judged by TLC analysis), the mixture was concentrated under vacuum to remove DMF and dissolved in CHCl₃ (200 mL). The solution was extracted with 1.0 M K₂CO₃ (100 mL) twice. The organic phase was dried with Na₂SO₄ and concentrated under vacuum. Further column chromatography on silica gel (EtOAc : PE = 1:10) afforded compound **8a** (700 mg, 86.3%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.41 (s, 1H), 8.55 (d, *J* = 8.9 Hz, 1H), 8.51 (s, 1H), 8.41 (d, *J* = 8.7 Hz, 1H), 8.00 (d, *J* = 8.9 Hz, 1H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.53 (s, 1H), 6.39 (s, 2H), 6.22 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.73, 148.53, 145.65, 145.01, 143.56, 139.22, 129.94, 128.82, 128.03, 127.66, 120.55, 119.32, 116.74, 114.71, 112.35, 104.93, 103.39, 102.04, 101.41. HRMS (ESI): m/z Calcd For C₁₉H₁₂NO₄ [M + H]⁺: 318.0766, found 318.0748. HPLC analysis: MeOH : H₂O (90 : 10), 11.78 min, 97.08% purity.

General Procedure for synthesis of compounds 8b and 8c.

Sodium borohydride (378mg, 10 mol, 20 equiv) was added portionwise to a stirred solution of the

compound **8a** (108mg, 0.5 mol, 1.0 equiv) in AcOH or CH_3CH_2COOH at room temperature. After being stirred at rt for 30 min, the reaction mixture was made weakly alkaline with 10% aq. NaOH and extracted with EtOAc. The organic phase was dried with Na₂SO₄ and concentrated under vacuum. Further column chromatography on silica gel (EtOAc : PE = 1:20) afforded compound **8b** (49 mg, yield 28.7%) and compound **8c** (54 mg, yield 30%) as white solid. (for **8b**: NaBH₄, AcOH, rt, 30min; for **8c**: NaBH₄, CH₃CH₂COOH, rt, 30min.)

13-ethyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridine (8b)

¹H NMR (400 MHz, DMSO- d_6) δ 7.76 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.47 (s, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.31 (s, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.13 (s, 2H), 6.10 (s, 2H), 4.15 (s, 2H), 2.69 (q, J = 6.9 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 147.86, 147.26, 146.84, 144.03, 141.87, 130.52, 126.91, 125.89, 124.22, 123.76, 120.19, 116.26, 113.42, 107.21, 104.28, 101.38, 101.23, 99.75, 46.67, 42.85, 13.52. HRMS (ESI): m/z Calcd For C₂₁H₁₈NO₄ [M + H]⁺: 348.1230, found 348.1223. HPLC analysis: MeOH : H₂O (90 : 10), 13.75 min, 96.35% purity.

13-propyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridine (8c)

¹H NMR (400 MHz, DMSO- d_6) δ 7.76 (d, J = 8.7 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.52 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.31 (s, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.14 (s, 2H), 6.10 (s, 2H), 4.14 (s, 2H), 2.63 – 2.57 (m, 2H), 1.62 – 1.48 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 148.14, 147.59, 147.14, 144.51, 142.91, 131.03, 127.93, 126.79, 124.95, 123.87, 120.45, 116.25, 114.44, 107.24, 104.50, 101.45, 101.14, 100.95, 54.74, 43.75, 21.68, 11.69. HRMS (ESI): m/z Calcd For C₂₂H₂₀NO₄ [M + H]⁺: 362.1387, found 362.1370. HPLC analysis: MeOH : H₂O (90 : 10), 17.10 min, 96.42% purity.

13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5] benzo [1,2-c][1,3]dioxolo[4,5 -i] phenanthridine (2). To the solution of sanguinarine chloride **(1)** (0.10 g, 0.27 mmol,1.0 equiv) in 15mL of MeOH, of NaBH₄ (82 mg, 2.17 mmol, 8 equiv) was added. The reaction solution was stirred for 30 min at rt. The solvent was evaporated to dryness under reduced pressure. The residue was subjected to column chromatography over silica gel using petroleum ether-ethyl acetate (20 : 1) as eluent, and recrystallized from petroleum ether-ethyl acetate (20 : 1) as a red-white granule crystal (33 mg, yield 36%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 8.6 Hz, 1H), 7.56 (d, *J* = 8.6 Hz, 1H), 7.52 (s, 1H), 7.40 (d, *J* = 8.2

Hz, 1H), 7.31 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.14 (s, 2H), 6.11 (s, 2H), 4.13 (s, 2H), 2.51 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 147.92, 147.27, 146.92, 144.29, 141.87, 130.44, 126.38, 125.73, 123.94, 123.85, 120.29, 116.29, 112.82, 107.27, 104.23, 101.36, 101.24, 99.74, 47.90, 41.30. HRMS (ESI): m/z Calcd For C₂₀H₁₆NO₄ [M + H]⁺: 334.1074, found 334.1064. HPLC analysis: MeOH: H₂O : TEA (80 : 20 : 0.02), 17.78 min, 96.82% purity.

General procedure for synthesis of compounds 8d-8i.

A reaction mixture of chelerythrine chloride (1) (40 mg, 0.10 mmol, 1.0 equiv) and amines (1.0 mmol, 10 equiv) in acetonitrile (3 mL) is stirred at rt overnight. The off-white solid is filtered, washed with acetonitrile and dried to afford compounds **8d-8i**.

N-ethyl-13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5i]

phenanthridine-14-amine (8d). A reaction mixture of chelerythrine chloride (1) (40 mg, 0.10 mmol) and ethylamine (45 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at rt overnight. The off-white solid is filtered, washed with acetonitrile and dried to afford off-white solid (15 mg, 39 %). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.81 (d, *J* = 8.6 Hz, 1H), 7.56 (s, 1H), 7.54 (d, *J* = 12.6 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.30 (s, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.11 (d, *J* = 20.0 Hz, 4H), 4.96 (s, 1H), 2.76 (dt, *J* = 14.1, 7.2 Hz, 1H), 2.65 (dd, *J* = 12.1, 6.6 Hz, 1H), 2.56 (s, 3H), 1.61 (s, 1H), 0.90 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.68, 147.08, 146.74, 144.49, 138.87, 130.48, 126.79, 124.99, 123.29, 122.86, 120.09, 116.19, 115.20, 107.74, 104.19, 101.34, 101.10, 99.68, 69.30, 40.68, 38.73, 14.70. HPLC analysis: MeOH : H₂O (90: 10), 6.88 min, 99.95% purity.

13-methyl-N-propyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-

i]phenanthridin-14-amine (8e). A reaction mixture of chelerythrine chloride **(1)** (40 mg, 0.10 mmol) and propylamine (59 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at room temperature overnight. The off-white solid is filtered, washed with acetonifrile and dried to afford off-white solid (25 mg, yield 64 %) .¹H NMR (400 MHz, DMSO-*d*₆) δ 7.81 (d, *J* = 8.7 Hz, 1H), 7.56 (s, 1H), 7.53 (d, *J* = 8.7 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.30 (s, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.16 – 6.07 (m, 4H), 4.94 (d, *J* = 6.9 Hz, 1H), 2.65 (t, *J* = 6.7 Hz, 2H), 2.56 (s, 3H), 1.58 (d, *J* = 6.8 Hz, 1H), 1.41 – 1.19 (m, 2H), 0.74 (t, *J* = 7.4 Hz, 3H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.23, 147.63, 147.30, 145.05, 139.46, 131.03, 127.37, 125.55, 123.84, 123.42, 120.63, 116.75, 115.80, 108.30, 104.74, 101.91, 101.66, 100.22, 69.93, 46.92, 41.25, 22.72, 12.25. HPLC analysis: MeOH : H₂O (90 : 10), 6.99 min, 99.77% purity.

N-isopropyl-13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-

i]phenanthridin-14-amine (8f). A reaction mixture of chelerythrine chloride (**1**) (40 mg, 0.10 mmol) and Isopropylamine (59 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at room temperature overnight. The off-white solid is filtered, washed with acetonitrile and dried to afford off-white solid (13 mg, yield 33 %). ¹H NMR (400 MHz, DMSO- d_6) δ 7.82 (d, J = 8.7 Hz, 1H), 7.54 (t, J = 4.3 Hz, 2H), 7.44 (d, J = 8.2 Hz, 1H), 7.31 (s, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.15 (d, J = 6.2 Hz, 2H), 6.14 – 6.07 (m, 2H), 5.05 (d, J = 8.4 Hz, 1H), 3.27 – 3.10 (m, 1H), 2.56 (s, 3H), 1.41 (s, 1H), 1.09 (d, J = 6.1 Hz, 3H), 0.76 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 147.67, 147.07, 146.77, 138.65, 130.47, 126.77, 124.89, 123.35, 122.86, 120.08, 116.22, 115.27, 107.71, 104.21, 101.35, 101.10, 99.57, 66.93, 43.00, 40.62, 40.03, 23.80, 21.43. HPLC analysis: MeOH : H₂O (90 : 10), 6.92 min, 99.81% purity.

N-cyclopentyl-13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-

i]phenanthridin-14-amine (8g). A reaction mixture of chelerythrine chloride **(1)** (40 mg, 0.10 mmol) and cyclopentylamine (85 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at room temperature overnight. The off-white solid is filtered, washed with acetonifrile and dried to afford off-white solid (21 mg, yield 50 %). ¹H NMR (400 MHz, DMSO-d₆) δ 7.81 (d, J = 8.7 Hz, 1H), 7.55 (s, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.30 (s, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.16 – 6.14 (m, 2H), 6.14 – 6.06 (m, 2H), 4.98 (d, J = 7.6 Hz, 1H), 3.45 (tt, J = 8.5, 4.3 Hz, 1H), 2.57 (s, 3H), 1.85 (dt, J = 12.4, 6.3 Hz, 1H), 1.65 – 1.32 (m, 7H), 1.06 (dq, J = 13.5, 7.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 148.20, 147.63, 147.32, 144.95, 139.49, 131.05, 127.33, 125.45, 123.84, 123.37, 120.64, 116.73, 115.84, 108.28, 104.76, 101.94, 101.67, 100.30, 68.95, 55.05, 41.42, 33.73, 32.28, 24.01, 23.94. HPLC analysis: MeOH : H₂O (90 : 10), 6.84 min, 100% purity.

13-methyl-14-morpholino-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5i]phenanthridine (8h). A reaction mixture of chelerythrine chloride **(1)** (40 mg, 0.10 mmol) and morpholine (87 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at room temperature overnight. The off-white solid is filtered, washed with acetonifrile and dried to afford off-white solid (21 mg, yield 50 %).¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.5 Hz, 1H), 7.64 (s, 1H), 7.46 (d, *J* = 8.5 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.11 (s, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.15 – 5.97 (m, 4H), 4.65 (s, 1H), 3.46 (dt, *J* = 6.3, 3.1 Hz, 4H), 2.83 (dt, *J* = 10.4, 4.2 Hz, 2H), 2.69 (s, 3H), 2.38 – 2.24 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.16, 147.56, 146.94, 146.17, 140.59, 131.22, 126.93, 126.58, 123.64, 123.46, 120.12, 116.44, 112.79, 108.46, 104.71, 101.59, 101.18, 100.92, 76.69, 67.11, 49.16, 42.49. HPLC analysis: MeOH : H₂O (90 : 10), 7.14 min, 99.36% purity.

N-benzyl-13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridin-14-amine (8i).

A reaction mixture of chelerythrine chloride (1) (40 mg, 0.10 mmol) and benzylamine (107 mg, 1.0 mmol) in acetonitrile (3 mL) is stirred at room temperature overnight. The off-white solid is filtered, washed with acetonifrile and dried to afford off-white solid (25 mg, yield 57 %). ¹H NMR (400 MHz, DMSO- d_6) δ 7.84 (d, J = 8.6 Hz, 1H), 7.65 (s, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.35 – 7.26 (m, 5H), 7.24 – 7.17 (m, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.16 (d, J = 3.5 Hz, 2H), 6.10 (dd, J = 31.7, 1.1 Hz, 2H), 4.87 (s, 1H), 3.97 (d, J = 13.9 Hz, 1H), 3.76 (d, J = 13.9 Hz, 1H), 2.51 (s, 3H), 2.28 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 147.72, 147.06, 146.74, 140.38, 138.66, 130.50, 127.95, 127.92, 126.31, 125.13, 123.34, 122.93, 120.09, 116.19, 115.08, 107.80, 104.21, 101.35, 101.10, 99.72, 67.96, 47.32, 40.48. HPLC analysis: MeOH : H₂O (90 : 10), 6.94 min, 100% purity.

14-methoxy-13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-

i]phenanthridine (8j). To the solution of chelerythrine chloride (1) (0.12 g, 0.33 mmol,1.0 equiv.) in 40mL of MeOH, 4mL of the solution of CH₃ONa in MeOH was added for (1) to pH 10, and refluxed for 6h. 15 ml of H₂O were added to the reaction solution, and extracted with CHCl₃. The solvent was evaporated to dryness under reduced pressure, and the residue was recrystallised in MeOH. 6-Methoxysanguinarine **8j** as a white crystal (45 mg, yield 37 %). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.84 (d, *J* = 8.7 Hz, 1H), 7.59 (s, 1H), 7.55 (d, *J* = 8.7 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.33 (s, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 6.19 – 6.11 (m, 4H), 5.34 (s, 1H), 3.32 (s, 3H), 2.71 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.39, 147.71, 147.37, 145.35, 138.34, 131.05, 126.59, 125.52, 123.92, 122.77, 120.42, 116.60, 113.40, 109.24, 104.86, 102.19, 101.76, 100.25, 85.55, 53.72, 41.06. HPLC analysis: MeOH : H₂O (90 : 10), 6.71 min, 98.76% purity.

13,14-dimethyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridine (8k).

In a dry and inert 25 mL Schlenk tube, chelerythrine chloride (1) (0.12 g, 0.33 mmol,1.0 equiv) was suspended in anhydrous THF (10 mL, purged with argon) and cooled to 0 °C in an ice bath. CH₃MgBr (1M in THF, 1 mL, 0.99 mmol, 3.00 eq) was added dropwise. The reaction mixture was allowed to reach rt and stirring was continued until a clear solution was obtained. Afterwards, the reaction mixture was quenched with water and extracted with EA (40 mL, three times). The combined organic layers were washed with brine, dried over magnesium sulfate. The solvent was removed under reduced

pressure. Further column chromatography on silica gel (EtOAc : PE = 1:25) afforded a white solid **8k** (40mg, yield 29 %). ¹H NMR (400 MHz, DMSO-d₆) δ 7.79 (d, J = 8.7 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.54 (s, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.30 (s, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.15 – 6.07 (m, 4H), 4.33 (q, J = 6.9 Hz, 1H), 2.52 (s, 3H), 1.05 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 147.92, 147.29, 146.80, 143.97, 139.40, 130.53, 126.98, 124.63, 123.80, 122.93, 120.08, 118.05, 116.53, 107.20, 104.20, 101.40, 101.22, 99.76, 52.30, 42.53, 20.05. HRMS (ESI): m/z Calcd For C₂₁H₁₈NO₄ [M + H]⁺: 348.1230, found 348.1219. HPLC analysis: MeOH : H₂O (90 : 10), 12.41 min, 98.92% purity.

13-methyl-13,14-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridine-14carbonitrile (81). Add CH₃CN to a mixture of chelerythrine chloride (1) (0.12 g, 0.33 mmol,1.0 equiv), CsF (55 mg, 0.36 mmol,1.1 equiv), trimethylsilyl cyanide (36mg, 0.36 mmol,1.1 equiv) in a ball flask at rt for 3h. Afterwards, the reaction mixture was quenched with water and extracted with EA (three times). The combined organic layers were washed with brine, dried over magnesium sulfate. The solvent was removed under reduced pressure. Further column chromatography on silica gel (EtOAc : PE = 1:20) afforded **8l** as a white solid (70mg, yield 59 %). ¹H NMR (400 MHz, DMSO-d₆) δ 7.87 (d, J = 8.7 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H), 7.52 (s, 1H), 7.38 (s, 1H), 7.13 (d, J = 8.1 Hz, 1H), 6.23 (d, J = 26.1 Hz, 2H), 6.18 (d, J = 2.7 Hz, 2H), 5.95 (s, 1H), 2.60 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 148.32, 147.65, 147.61, 144.66, 138.09, 130.69, 125.75, 125.01, 124.83, 122.56, 120.07, 118.08, 117.17, 109.34, 107.20, 104.29, 102.26, 101.39, 99.33, 47.30, 40.79. HRMS (ESI): m/z Calcd For C₂₁H₁₅N₂O₄ [M + H]⁺: 359.1026, found 359.1026. HPLC analysis: MeOH : H₂O (90 : 10), 5.38 min, 96.12% purity.

13-methyl-[1,3]dioxolo[4',5':4,5]benzo[1,2-c][1,3]dioxolo[4,5-i]phenanthridin-14(13H)-one (8m). To a hot solution (90°C) of chelerythrine chloride (1) (0.12 g, 0.33 mmol,1.0 equiv) in 50mL of 0.2% HCl in water was added a hot solution (80°C) of K₃Fe(CN)₆ (0.8 g) in H₂O (10 mL) with stirring. Stirring was continued for 3 h at 90°C. During the reaction, 5mL of 3% KOH in water was added every 30 min. After cooling, the precipitate was collected. The solid was dissolved in CHCl₃, washed with water and dried over Na₂SO₄. The residue was recrystallised from CHCl₃-acetone. compound 8m as a grey amorphous powder (50 mg, yield 43%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (d, *J* = 8.7 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.72 (s, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.41 (s, 1H), 6.27 (s, 2H), 6.18 (s, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.83, 147.90, 147.79, 147.66, 147.25, 135.70, 131.97, 128.93, 123.68, 121.28, 118.83, 117.42, 115.58, 113.34, 111.02, 104.85, 103.03, 102.65, 101.68, 40.99. HRMS (ESI): m/z Calcd For C₂₀H₁₃NO[M + H]⁺: 348.0866, found 348.0867. HPLC analysis: MeOH : H₂O (90 : 10), 7.28 min, 100% purity.

3. Materials and methods of biological studies

Antibodies

The antibodies used in this study were as follows: anti-GAPDH (Beyotime); anti-AKT, anti-p-AKT, anti-caspase3, anti-cleaved-caspase3, anti-cleaved-caspase9, anti-PARP, goat anti-rabbit IgG-HRP and goat anti-mouse IgG-HRP antibody (Cell Signaling Technology). Cell Culture and Treatment

A549 and H1975 cell lines were obtained from the Cell Research Institute of the Chinese Academy of Sciences (Shanghai, China). The cells were cultured in 1640 medium (Gibco, CA, USA) containing 10% fetal bovine serum (Gibco), penicillin (100U/ml, Gibco), and streptomycin (100µg/ml, Gibco) under a humid 5% CO₂ atmosphere at 37 °C. For drug treatment, A549 and H1975 cells were treated with D3896 for 72h. **8h** with a purity of \geq 98% according to HPLC was dissolved in DMSO to prepare a stock solution.

Cell Counting Kit-8 Assay

The viability of A549 and H1975 was measured by using a cell counting kit-8 (Dojindo, Japan). In brief, 3×10^3 cells were seeded into each well of the 96-well plates and incubated overnight for attachment. After 72 h treatments of **8h**, the cells were incubated with CCK-8 solution at 37°C for 2 hr. The absorbance under 450 nm was detected by using a microplate reader (Bio-TEK instruments, VT, USA). The results were expressed as the mean percentage of absorbance in treated versus control cells.

Cell Cycle and Cell Apoptosis Assay

Flow cytometry was conducted to determine the cell cycle distribution and apoptosis of A549 and H1975 cells after **8h** treatment. Briefly, A549 and H1975 cells were seeded in six-well plates and cultured overnight, then the cells were incubated with **8h** for 24h or 48h to test cell cycle and apoptosis respectively. The cells were prepared according to instruction of the BD Cycletest Plus DNA Reagent kit (BD Biosciences) and FITC-Annexin V Apoptosis Detection Kit (BD Pharmingen, USA) and then detected by a flow cytometer (Guawa easyCyte, USA).

Western Blotting.

At the end of treatment, the cells were harvested and lysed using RIPA lysis buffer. Equal amounts of protein per sample were loaded in each lane and separated by 12% SDS-PAGE and then transferred to PVDF membranes. The membranes were blocked with 5% milk for 2 h at room temperature and incubated with the indicated antibodies overnight at 4 °C. The PVDF membranes were further incubated with HRP-conjugated secondary antibodies for 2 h at room temperature. The protein bands were visualized using a Super Signal West Pico Chemiluminescent Substrate Trial Kit (Pierce, Rockford, IL). Images were obtained using an Amersham Imager 600 (GE, UK). Determination of ROS Production

Flow cytometry was conducted to determine ROS production in A549 and H1975 cells after **8h** treatment. The intracellular ROS level was measured using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) fluorescent probe. Briefly, 20 minutes later after **8h** treatment, A549 and H1975 cells were washed with PBS and incubated with 10 μ M DCFH-DA in phenol red-free DMEM medium for 30 min at 37 °C in the dark. DCFH-DA will be cleaved by intracellular esterases and be oxidized into the highly fluorescent dichlorofluorescein (DCF) by ROS. The cells were then washed with PBS for 3 times to remove the residual DCFH-DA. ROS-positive cells were monitored by a flow cytometer (Guawa easyCyte, USA) with excitation at 488 nm and emission

HPLC Purity Analysis HPLC Purity Analysis of 8a

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.687	BB	0.0966	14.79608	2.19736	0.3829
2	8.394	BB	0.3710	108.04200	4.50100	2.7960
3	11.783	BB	0.2439	3741.26123	237.34528	96.8210

3864.09931 244.04363

Totals :

HPLC Purity Analysis of 8b

Sorted By	:	Sigr	ler			
Multiplier	:	2.00	900			
Dilution	:	1.00	996			
Sample Amount:		:	10.00000	[ng/ul]	(not used in ca	alc.)
Use Multiplier	& Dilution	Factor	with ISTDs			

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.543	vv	0.3394	48.96468	1.81678	0.3412
2	4.499	VB	0.3099	41.13912	1.72063	0.2866
3	5.233	BV R	0.1121	146.29930	19.81963	1.0193
4	7.303	BB	0.1660	34.27641	3.19803	0.2388
5	9.294	BB	0.4175	253.01122	9.35623	1.7629
6	13.752	BB	0.2870	1.38286e4	746.84760	96.3512
Total	ls :			1.43523e4	782.75889	

HPLC Purity Analysis of 8c

Acq. Operator :	: 系统		
Sample Operator :	- 羽-3党		
Acq. Instrument :	: 1260LC	Location : 21	
Injection Date :	18/07/2018 11:59:15		
	stown with the second second second	Inj Volume : 25.000 μ1	
Acq. Method :	E: \DK\IL\ / 72\90C-10A-30min-10	J.M	
Last changed :	18/0//2018 11:5/:5/ by seem		
Analysis Hathad	(modified after loading)		
Analysis method :	01/08/2017 11:44:14 by 54	20L.M	
VWD1 A, Wa	avelength=254 nm (E3DK)zhangvinkdata(20180718	3JL055 2018-07-18 11-58-28.D)	
- UAm		8	
800-			
600 -			
400 -			
200 -			
	- 4628 6.209		
•			
	5 10	15 20 25	mir
	Area Percent Report		
Controd Bu	. Cianal		
Multiplier	2 0000		
Dilution	: 1.0000		
Sample Amount:	: 10,00000 [n	g/ull (not used in calc.)	
Use Multiplier &	Dilution Factor with ISTDs		
Signal 1: VWD1 A,	, Wavelength=254 nm		
Peak RetTime Type	a Width Area Height	Area	
# [min]	[min] [mAU*s] [mAU]	x	
	·		
1 5.628 BV R	0.1364 241.19193 26.94648	1.0134	
2 8.209 BB	0.1987 58.34347 4.51754	0.2451	
3 10.952 BB	0.4710 552.49304 18.10527	2.3214	
4 17.100 BB	0.3683 2.29477e4 969.06537	96.4200	

Totals : 2.37997e4 1018.63465

HPLC Purity Analysis of 8d

Acq. Operator :	系统
Sample operator :	和25元 13201 C
Acq. Instrument :	1260LL LOCATION : 12
injection bate :	12/05/2018 11:14:55
Aca Mathad	IN] VOLUME : 15.000 µ1
Acq. Method :	12/05 (2010 10-21-57 b) E #
Last changed :	12/05/2018 10:21:57 by 9R:57
Analysis Mathed .	(modified after loading)
Analysis Method :	::\DK\IL\力 7云(80C-20D-20MIN-20UL.M
VWD1A, Wave	91/98/2017 11:44:14 DV 35:57 length=254 nm (E:\DK\zhangxin\data\20180512\L0159 2018-05-12 11-13-51.D)
mAU 1	
	ei i
2000-1	
2000	
1 1	
1500	
1500 7	
1000	
1 1	
500	
500-	
0	
	5 10 15 20 25 30 35 min
	Area Percent Report
Contrad Du	final
Multiplier	: 1 0000
Dilution	1,0000
Sample Amount:	. 5 00000 [ng/ul] (not used in calc.)
Use Multiplier & D	ilution Easton with ISTDs
use multiplier a D.	
Signal 1: Webt A	Havelongth=254 pm
SIGNAL I: VMDI A, I	vavelengtn=254 nm
Dook DatTing Tung	Uidth Ann Unight Ann
# [min]	mini malifel malil %
* [min]	
1 4 470 1/2	0 1173 14 20067 1 00530 0 0435
2 4.4/0 VD	0 2102 2 2007104 2215 02527 00 05455
2 0.062 DD	0.2103 3.200/104 2313.0203/ 33.3303
Totals :	3.28214e4 2316.83167

HPLC Purity Analysis of 8e

Acq. Operator	: 泉筑
Sample Operator	:系统
Acq. Instrument	: 1260LC Location : 13
Injection Date	: 18/04/2018 20:55:03
Anna Mathead	Inj volume : 15.000 µl
Acq. Method	: E: (DK (2HANGAIN (METHOD) 90C-10A-40MIN-SUL.M
Last changed	18/04/2018 18:54:59 Dy 3R390
	(modified after loading)
Analysis Method	: E:\DK\TL\力法\80C-20D-20MIN-20UL.M
Last changed	: 01/08/2017 11:44:14 Dy 系统 malaneth=254 nm (E-DRU-than-paint/state/201804181# 01/40 2018-04-18 20-55-15 D)
mAll J	aveerigin-zov nin (c. soveznangvinstatazo rook resizo ree zo rook ris zo so ris.c)
1750 -	T T
-	
1500 -	
1	
1250 -	
1	
1	
1000 -	
4	
750-	
1	
500 -	
1	
250 -	
	o 8
1	22
0	
	5 10 15 20 25 30 1
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1,000
Dilution	: 1,0000
Sample Amount:	: 5.00000 [ng/ul] (not used in calc.)
Use Multiplier	Dilution Factor with ISTDs
Signal 1: WeD1	Havelongth=254 pm
Prot T. ANDI	, norecongenezation

Peak #	RetTime [min]	Тур	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
	3.479	VB	0.0988	16,01152	2.49145	0.0434
2	6.990	BB	0.2870	3.68041e4	1842.73682	99.7766
3	11.768	VB	R 0.2694	66.40449	3.70020	0.1800

Totals : 3.68865e4 1848.83847

HPLC Purity Analysis of 8f

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.479	VB	0.0964	26.38414	4.13907	0.1804
2	6.920	BB	0.2256	1.45986e4	980.88928	99.8196

Totals : 1.46250e4 985.02835

HPLC Purity Analysis of 8g

Acq. Operator	: 3	点 约元						
Sample Operator	: 3	点当 死						
Acq. Instrument	: 13	260LC		Location	: 3			
Injection Date	: 1	3/06/2018 15:	34:55					
				Inj Volume	: 5.000 µl			
Acq. Method	: E	:\DK\TL\方法\	90C-10A-30min	-1u.M				
Last changed	: 04	4/07/2017 19:	18:29 by 系统					
Analysis Method	: E	:\DK\TL\方法\	80C-20D-20MIN	-20UL.M				
Last changed	: 0:	1/08/2017 11:	44:14 by 系统					
VWD1 A, I	Navele	ngth=254 nm (E:VDK	Azhangxin/data/20180	613\JL0173 2018-06-1	13 15-34-10.D)			
mAU -		10						
1		Ť						
700-								
1								
600 -								
1								
500 -								
1								
100								
400-								
300 -								
1								
200-								
1								
100-								
1		11						
0-		1						
L.,,		· · · ·						
		0	10	15		20	20	
		100000000000000000000000000000000000000						
		Apos Po	ancent Report					
		Area Pe	a cent keport					
Sorted By		: Sig	anal					
Aultiplier		: 2.0	000					
Dilution		: 1.0	600					

Dilution : 1.0000 Sample Amount: : 5.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.841	BB	0.1886	9619.76270	786.98442	100.0000

Totals : 9619.76270 786.90442

HPLC Purity Analysis of 8h

Acq. Operator	: 系统	
Sample Operato	:系统	
Acq. Instrumen	: 1260LC Location : 12	
Injection Date	: 18/04/2018 20:14:30	
	Inj Volume : 15.000 µl	
Acq. Method	: E:\DK\ZHANGXIN\METHOD\90C-10A-40Min-5uL.M	
Last changed	: 18/04/2018 18:34:59 by 系统	
	(modified after loading)	
Analysis Metho	: E:\DK\TL\方法\80C-20D-20MIN-20UL.M	
Last changed	: 01/08/2017 11:44:14 by 系统	
VWD1 A	avelength=254 nm (E:VDK\zhangxin\data\20180418\JL0136 2018-04-18 20-13-45.D)	_
mAU -	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
400		
350 -		
300 -		
1		
250		
1		
200-		
1		
150 -		
1		
100-		
1		
50		
	2 2	
	3	
- L.		-
	<u>5 10 15 20 25 30 35</u>	m
	Arra Dorona Dorona	
Control Du		
Sorted By	: 51gna1	
Dilution	1,000	
Carala Anal	: 1.0000 [==(:]] (=t und is sale)	
sample Amount:	: 5.00000 [ng/ul] (not used in calc.)	
Use Multiplier	Dilution Factor with ISTDs	
Signal 1: VWD1	, wavelengtn=254 nm	
Daak Batties T	a Width Anna Wainht Anna	
reak Retrime T	e wigth Area Height Area	
" [min]	[min] [meo's] [meo] &	
1 2 470 1	0 0049 19 0CE20 2 0EE09 0 22E7	
1 5.4/9 V		
2 0.805 B	E 0.15/1 52.9690/ 5.10186 0.4122 P 0.2914 7052 07010 434 64624 00.3621	
3 7.145 V	n 0.2014 /352.0/310 454.04024 33.5021	
Totals :	0002 12406 440 60219	
IULdis :	0003.13400 440.00310	

HPLC Purity Analysis of 8i

Signal 1: VWD1 A, Wavelength=254 nm

Totals : 6328.11084 469.86807

HPLC Purity Analysis of 8j

Acq. Operator : 系统	
Sample Operator : 1260 C Location : 1	
Act, Instrument : 1200LC LOCALION : 1	
Ini Volume : 5.000 ul	
Acq. Method : E:\DK\DYX\90C-10A-40MIN-5uL.M	
Last changed : 27/01/2018 20:34:38 by 系统	
Analysis Method : E:\DK\TL\方法\80C-20D-20MIN-20UL.M	
Last changed : 01/08/2017 11:44:14 by 系统	
VWD1 A, Wavelength=254 nm (E:DKtzhangxinktata/20180323iJL075 2018-03-24 13-43-37.D)	
mAU Fr	
· •	
700 -	
600-	
500-	
300 -	
200	
100-	
4	
6	
123	
	min
	min
	min
Area Percent Report	min
Area Percent Report	min
Area Percent Report	min
Area Percent Report Sorted By : Signal Multiplier : 1.0000	min
Area Percent Report Sorted By : Signal Multiplier : 1.0000	min
0 10 15 20 25 Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution : 1.0000 5.0000 [ng/ul] (not used in calc.)	1 min
0 10 15 20 25 Area Percent Report Area Percent Report Multiplier 1.0000 Dilution : 1.0000 10 <	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs	1 min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs	min
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs Signal 1: VMD1 A, Wavelength=254 nm	min
0 10 15 20 25 Area Percent Report Area Percent Report Sorted By :: Signal Multiplier :: 1.0000 Dilution : 1.0000 Sample Amount: :: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs Signal 1: VMD1 A, Wavelength=254 nm	T min
Area Percent Report Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area	min
Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	min
0 10 15 20 25 Area Percent Report Multiplier 1.0000 Dilution 1.0000 10000 10000 Sample Amount: : 20.00000 [ng/ul] (not used in calc.) Use Multiplier & Dilution Factor with ISTDs Signal 1: VMD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU] X	1 min

Totals : 8278.17889 771.35009

HPLC Purity Analysis of 8k

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.478	VV R	0.1091	16.61591	2.20112	0.4084
2	6.871	BV	0.1691	27.18153	2.49476	0.6680
3	12.411	BB	0.2627	4025.15674	237.49684	98.9236

Totals : 4068.95418 242.19272

HPLC Purity Analysis of 81

		56.777		12441			
	110	4		14			
		1					
		184					
WD1 A, W	avelength=2	254 nm (E:VDP	Azhangxin\data\201	80323\JL0138 2018-0	03-24 14-17-00.D)		
red	: E:\DK	(TL\方法)	80C-20D-20MI 44:14 hv 高年	N-20UL.M			
ged	: 27/01,	/2018 20:	.34:38 by 系统	统			
bd	: E:\DK	DYX\90C-	10A-40MIN-5u	IL.M			
Date	: 24/03	/2018 14:	17:39	Ini Volum	e : 5.000 ul		
ument	: 1260L0	C	17.20	Location	n: 2		
erator	: 系统						
	ator anator ument Date ad ged kethod ged WD1A.W	itor : 系统 irator : 系统 'ument : 1260L Date : 224/03, d : E:\DK ged : 27/01, lethod : E:\DK WD1A, Wavelength=2 WD1A, Wavelength=2	itor : 系统 irator : 系统 'ument : 1260LC Dat : 24/03/2018 14: nd : E:\DK\TL\方法 fed : 27/01/2018 20: fethod : E:\DK\TL\方法 ped : 21/08/2017 11: //D1A,Wavelength=224 nm (E/D)	itor : 系统 irator : 系统 'ument : 1260LC Date : 24/03/2018 14:17:39 d : E:\DK\DYX\90C-10A-40MIN-5u jed : 27/01/2018 20:34:38 by 系 fethod : E:\DK\TL\方法\80C-20D-20MI jed : 01/08/2017 11:44:14 by 系 WDTA, Wavelength-254 nm (E:DK\zhangvin/dataC01	itor : 系统 irator : 系统 'ument : 1266LC Location Dat : 24/03/2018 14:17:39 Inj Volum d : E:\DK\TU\DYX\90C-10A-40MIN-5UL.M jed : 27/01/2018 20:34:38 by 系统 fethod : E:\DK\TL\方法\80C-200-20MIN-20UL.M jed : 01/08/2017 11:44:14 by 系统 WD1A, Wavelength=254 nm (E:\Dikuhanguinkink20180323UL0138 20184	rtor : 系统 Prator : 系统 Unument : 126eLC Location : 2 Date : 24/03/2018 14:17:39 Inj Volume : 5.000 µl d : E:\DK\DYX\90C-10A-40MIN-5UL.M jed : 27/01/2018 20:34:38 by 系统 Motion : E:\DK\TL\方法90C-200-20MIN-20ULM jed : 01/08/2017 11:44:14 by 系统 ND1A, Wavelength=254 nm (E:\DK\Lhangwinkdata/20180323JL0138 2018-03-24 14-17-00.D)	itor : 系统 irator : 系统 Unment : 1260LC Location : 2 Date : 24/03/2018 14:17:39 Inj Volume : 5.000 µl d : E:\DK\DYX\90C-10A-40MIN-5uL.M ied : 27/01/2018 20:34:38 by 系统 fethod : E:\DK\TL\fy法\80C-20D-20MIN-20UL.M jed : 01/08/2017 11:44:14 by 系统 ND1 A. Wavelength=024 nm (E:DK\thanguindata/20180323\JL0138 2018-03-24 14-17-00.D)

Sorted By	:	Sign	nal		
Multiplier	:	1.00	888		
Dilution		1.00	900		
Sample Amount:		:	20.00000	[ng/ul]	(not used in calc.)
Use Multiplier	& Dilution	Factor	with ISTDs		

Signal 1: VWD1 A, Wavelength=254 nm

Pe	#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	1	5.382	BB	0.1232	2768.77344	350.45569	96.1217
	2	6.777	BV R	0.1846	80.14971	6.55704	2.7825
	3	12.441	BB	0.2520	31.56367	1.92786	1.0958

Totals : 2880.48682 358.94059

HPLC Purity Analysis of 8m

Totals : 2985.99316 201.73741