Supplementary Information

Argininamide-Type Neuropeptide Y Y₁ Receptor Antagonists: The Nature of N $^{\omega}$ -Carbamoyl Substituents Determines Y₁R Binding Mode and Affinity

Jonas Buschmann, Theresa Seiler, Günther Bernhardt, Max Keller, and David Wifling*

Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany

Table of Contents

1.	Figures S1-S2	S2
2.	Table S1	S4
3.	Synthesis Protocols and Analytical Data of Compounds 23-34, 38-39, 41-42, 53-76 and 78	S4
4.	¹ H-NMR und ¹³ C-NMR Spectra of Compounds 53-76	S15
5.	RP-HPLC Purity Chromatograms of Compounds 53-76 and 78	S39
6.	Investigation of the Chemical Stability of Compounds 56, 58-61, 63 and 68	S43
7.	References	S45

Figure S1. (A, C) Displacement curves of [³H]**2** (c = 0.15 nM) obtained from competition binding studies with **68-72** (A), **73-76**, **78** (C) and reference compound **2** at Y₁R-expressing SK-N-MC cells. (B, D) Concentration dependent inhibition curves obtained from the Fura-2 Ca²⁺ assay at intact HEL cells. The intracellular Ca²⁺ mobilization was induced by 10 nM pNPY after preincubation of the cells with **68-72** (B), **73-76** (D), respectively, for 15 min or the reference compound **2** for 20 min. (A-D) Data of compound **2** were taken from Keller et. al.¹

Figure S2. Time-course illustrations of the 2- μ s MD simulations of the Y₁R (inactive state, PDB ID: 5ZBQ²) bound to **1** (A), **2** (B) or **3** (C) showing superimposed snap shots collected every 100 ns.

2. Table S1

compd.	slope ± SEM ^a (competition binding)	slope ± SEM ^b (Fura-2 Ca ²⁺)	compd.	slope ± SEM ^a (competition binding)	slope ± SEM ^b (Fura-2 Ca ²⁺)
53	-1.05 ± 0.07	n.d.	66	-1.17 ± 0.08	-1.17 ± 0.11
54	-1.06 ± 0.03	n.d.	67	-0.97 ± 0.05	-1.30 ± 0.21
55	-0.97 ± 0.10	n.d.	68	-1.02 ± 0.09	-0.96 ± 0.07
56	-1.27 ± 0.10	-2.36 ± 0.09**	69	-1.00 ± 0.07	-1.07 ± 0.24
57	-1.25 ± 0.06*	-1.92 ± 0.09**	70	-1.03 ± 0.14	-1.13 ± 0.30
58	-1.08 ± 0.08	-2.17 ± 0.15**	71	-1.00 ± 0.04	-1.02 ± 0.05
59	-1.17 ± 0.03*	-1.74 ± 0.22*	72	-0.98 ± 0.07	-1.19 ± 0.12
60	-1.03 ± 0.09	-1.79 ± 0.29	73	-0.91 ± 0.16	-0.99 ± 0.07
61	-1.02 ± 0.01	-0.79 ± 0.07	74	-0.90 ± 0.03*	-0.83 ± 0.01**
62	-1.01 ± 0.08	-1.39 ± 0.21	75	-0.89 ± 0.06	-0.86 ± 0.12
63	-1.10 ± 0.18	-1.27 ± 0.16	76	-0.82 ± 0.08	-1.00 ± 0.11
64	-0.89 ± 0.05	-0.69 ± 0.07*	78	-1.17 ± 0.03*	n.d.
65	-0.81 ± 0.07	-0.83 ± 0.04			

Table S1 Slope factors (Hill slope) of compounds **53-76** and **78** determined by equilibrium competition binding with [³H]**2** and in the Fura-2 Ca²⁺ assay, respectively.

^aSlope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of radioligand competition binding data. Mean values \pm SEM from at least three independent experiments performed in triplicate. ^bSlope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of the Fura-2 Ca²⁺ data. Mean values \pm SEM from at least three independent experiments performed in singlet. *Slope significantly different from unity, $P \le 0.05$ (one sample, two-tailed t-test). **Slope significantly different from unity, $P \le 0.01$ (one sample, two-tailed t-test).

3. Synthesis Protocols and Analytical Data of Compounds 23-34, 38-39, 41-42, 53-76 and 78

Succinimidyl 2-methylpropionate (23).³ A solution of DCC (0.89 g, 4.31 mmol) in CH₂Cl₂ (1 mL) and of 2methylpropionic acid (**10**) (369 μ L, 3.98 mmol) in CH₂Cl₂ (1 mL) were dropped to an ice-cold solution of **22** (0.46 g, 4.00 mmol) in CH₂Cl₂ (6 mL) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH₂Cl₂. The filtrate was washed with a saturated solution of NaHCO₃ (100 mL) and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH₂Cl₂ and crystallization, initiated by the addition of light petroleum, afforded **23** (0.22 g, 1.19 mmol, 30%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 1.32 (d, *J* 7.0 Hz, 6H), 2.82 (s, 4H, interfering with the next signal), 2.88 (septet, 1H, *J* 7.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 18.9, 25.7, 31.8, 169.4, 172.2. HRMS (APCI): m/z [M+H]⁺ calc. for [C₈H₁₂NO₄]⁺ 186.0766, found 186.0765. C₈H₁₁NO₄ (185.18).

Succinimidyl 2,2-dimethylpropionate (24).⁴ A solution of DCC (1.13 g, 5.48 mmol) in CH_2Cl_2 (1 mL) and of 2,2-dimethylpropionic acid (**11**) (0.50 g, 4.90 mmol) in CH_2Cl_2 (1 mL) were dropped to an ice-cold solution of **22** (0.46 g, 4.00 mmol) in CH_2Cl_2 (6 mL) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH_2Cl_2 . The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH_2Cl_2 and crystalization, initiated by the addition of light petroleum, afforded **24** (0.28 g, 1.41 mmol, 35%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.37 (s, 9H), 2.78-2.84 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 25.7, 27.1, 38.5, 169.3, 173.5. HRMS (APCI): m/z [M+H]⁺ calc. for [C₉H₁₄NO₄]⁺ 200.0923, found 200.0918. C₉H₁₃NO₄ (199.21).

Succinimidyl N-Boc-glycinate (25).⁵ DCC (0.61 g, 2.97 mmol) was dissolved in CH₂Cl₂ and dropped to an ice-cold solution of **22** (0.34 g, 2.97 mmol) and N-Boc-glycinate (**12**) (0.40 g, 2.28 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred on an ice bath for 2 h. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH₂Cl₂. The filtrate was washed with a saturated solution of NaHCO₃ (2x 75 mL), and the organic phase dried over Na₂SO₄. The solvent was evaporation at reduced pressure and **25** (0.53 g,

1.95 mmol, 86%) was obtained as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 1.39 (s, 9H), 2.81 (s, 4H), 4.09 (d, *J* 6.2 Hz, 2H), 7.48 (t, *J* 6.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6): δ (ppm) 25.4, 28.1, 39.8, 78.8, 155.6, 166.9, 170.0. HRMS (APCI): m/z [M+NH₄]⁺ calc. for [C₁₁H₂₀N₃O₆]⁺ 290.1352, found 290.1350. C₁₁H₁₆N₂O₆ (272.26).

Succinimidyl benzoate (26).⁶ DCC (1.10 g, 5.33 mmol) was dissolved in THF (10 mL) and dropped to an ice-cold solution of **22** (0.82 g, 3.13 mmol) and benzoic acid (**13**) (0.50 g, 4.09 mmol) in THF (30 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered, the solid washed (2x) with THF (5 mL) and the organic solvent dried over Na₂SO₄ and evaporated at reduced pressure. The crude product was purified by column chromatography (eluent: CH₂Cl₂/MeOH 97:3) to obtain **26** (0.59 g, 2.69 mmol, 86%) as white solid. ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 2.90 (s, 4H), 7.62-7.70 (m, 2H), 7.80-7.88 (m, 1H), 8.07-8.14 (m, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ (ppm) 25.4, 124.4, 129.45, 129.88, 135.5, 161.7, 170.2. HRMS (APCI): m/z [M+H]⁺ calc. for [C₁₁H₁₀NO₄]⁺ 220.0610, found 220.0608. C₁₁H₉NO₄ (219.20).

Succinimidyl phenylacetate (27).⁷ A solution of DCC (0.84 g, 4.07 mmol) in DMF (1 mL) and of 2-phenylacetic acid (**14**) (0.50 g, 3.67 mmol) in DMF (1 mL) were dropped to an ice-cold solution of **22** (0.36 g 7.12 mmol) in DMF (4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (5x) with DMF (1 mL). The organic phase was poured in saturated NaHCO₃ solution (75 mL), and the aqueous phase extracted with ethyl acetate (3x 75 mL). The combined organic phases were washed (2x) with water, dried over MgSO₄, and evaporated under reduced pressure. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:2) to obtain **27** (0.61 g, 2.62 mmol, 84%) as white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 2.81 (s, 4H), 3.94 (s, 2H), 7.28-7.41 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 25.7, 37.7, 127.9, 129.0, 129.4, 131.5, 166.9, 169.1. HRMS (APCI): m/z [M+H]⁺ calc. for [C₁₂H₁₂NO₄]⁺ 234.0766, found 234.0765. C₁₂H₁₁NO₄ (233.22).

Succinimidyl diphenylacetate (28).⁸ DCC (1.08 g, 5.23 mmol) was dissolved in CH₂Cl₂ (1 mL) and dropped to an ice-cold solution of **22** (0.36 g, 3.1 mmol) and diphenylacetic acid (**15**) (0.20 g, 0.94 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred on an ice bath for 2 h. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH₂Cl₂. The filtrate was washed with a saturated solution of NaHCO₃ (3x 100 mL) and the organic phase dried over Na₂SO₄. The solvent was evaporated at reduced pressure and the crude product was purified by column chromatography (eluent light petroleum/ethyl acetate 2:1 to 1:1) to obtain **28** (0.50 g, 1.62 mmol, 72%) as a white sodlid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.66 (s, 4H), 5.25 (s, 1H), 7.18-7.31 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 25.7, 54.1, 128.00, 128.79, 128.96, 136.8, 168.2, 169.0. HRMS (APCI): m/z [M+N]⁺ calc. for [C₁₈H₁₆NO₄]⁺ 310.1079, found 310.1075. C₁₈H₁₅NO₄ (309.32).

Succinimidyl cyclopropanecarboxylat (29).⁹ A solution of DCC (0.93 g, 4.51 mmol) in CH_2Cl_2 (1 mL) and of cyclopropane carboxylic acid (**16**) (324 µL, 4.07 mmol) in CH_2Cl_2 (1 mL) were dropped to an ice-cold solution of **22** (0.48 g, 4.17 mmol) in CH_2Cl_2 (6 mL) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH_2Cl_2 . The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH_2Cl_2 and crystallization, initiated by the addition of light petroleum, afforded **29** (0.33 g, 1.80 mmol, 43%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.05-1.24 (m, 4H), 1.81-194 (m, 1H), 2.80 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 10.3, 10.6, 25.6, 169.4, 170.3. HRMS (APCI): m/z [M+H]⁺ calc. for [$C_8H_{10}NO_4$]⁺ 184.0610, found 184.0606. $C_8H_9NO_4$ (183.16).

Succinimidyl cyclobutanecorboxylat (30).¹⁰ A solution of DCC (0.81 g, 3.93 mmol) in ethyl acetate (1 mL) and of cyclobutanecarboxylic acid (**17**) (335 μ L, 3.50 mmol) in ethyl acetate (1 mL) were dropped to an icecold solution of **22** (0.35 g, 3.04 mmol) in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH₂Cl₂. The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH₂Cl₂ and crystallization, initiated by the addition of light petroleum, afforded **30** (0.22 g, 1.11 mmol, 37%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 1.93-2.14 (m, 2H), 2.30-2.53 (m, 4H), 2.78-2.89 (m, 4H),

3.37-3.51 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 18.9, 25.5, 25.8, 35.2, 169.5, 170.7. HRMS (APCI): m/z [M+H]⁺ calc. for [C₉H₁₂NO₄]⁺ 198.0766, found 198.0764. C₉H₁₁NO₄ (197.19).

Succinimidyl cyclopentanecarboxylat (31). A solution of DCC (0.70 g, 3.39 mmol) in ethyl acetate (1 mL) and of cyclopentanecarboxylic acid (**18**) (333 µL, 3.07 mmol) in ethyl acetate (1 mL) were dropped to an icecold solution of **22** (0.35 g, 3.04 mmol) in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH_2Cl_2 . The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH_2Cl_2 and crystallization, initiated by the addition of light petroleum, afforded **31** (0.33 g, 1.56 mmol, 51%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 1.58-1.79 (m, 4H), 1.89-2.09 (m, 4H), 2.78-2.88 (m, 4H), 2.97-3.11 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 25.7, 26.0, 30.3, 40.7, 169.5, 172.0. HRMS (APCI): m/z [M+NH₄]⁺ calc. for [C₁₀H₁₇N₂O₄]⁺ 229.1188, found 229.1187. C₁₀H₁₃NO₄ (211.22).

Succinimidyl cyclohexanecarboxylat (32).^{10, 11} A solution of DCC (0.77 g, 3.73 mmol) in ethyl acetate (1 mL) and of cyclohexanecarboxylic acid (**19**) (0.36 g, 2.81 mmol) in ethyl acetate (1 mL) were dropped to an ice-cold solution of **22** (0.41 g, 3.56 mmol) in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH₂Cl₂. The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH₂Cl₂ and crystallization, initiated by the addition of light petroleum, afforded **32** (0.40 g, 1.67 mmol, 59%) as a white solid. ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 1.19-1.62 (m, 7H), 1.64-1.75 (m, 2H), 1.86-1.96 (m, 2H), 2.80 (s, 4H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ (ppm) 24.3, 25.0, 25.5, 28.4, 39.4, 170.3, 170.9. HRMS (APCI): m/z [M+NH₄]⁺ calc. for [C₁₁H₁₉N₂O₄]⁺ 243.1345, found 243.1346. C₁₁H₁₅NO₄ (225.24).

Succinimidyl cyclohexylacetate (33). A solution of DCC (0.58 g, 2.81 mmol) in CH_2Cl_2 (1 mL) and of cyclohexylacetic acid (**20**) (0.36 g, 2.53 mmol) in CH_2Cl_2 (1 mL) were dropped to an ice-cold solution of **22** (0.29 g, 2.52 mmol) in CH_2Cl_2 (6 mL) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with CH_2Cl_2 . The filtrate was washed with a saturated solution of NaHCO₃ (100 mL), and the organic phase dried over Na₂SO₄. The solvent was removed by evaporation, the residue was taken up in CH_2Cl_2 and crystallization, initiated by the addition of light petroleum, afforded **33** (0.25 g, 1.04 mmol, 41%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 0.99-1.33 (m, 5H), 1.62-1.92 (m, 6H), 2.46 (d, *J* 6.7 Hz, 2H), 2.83 (s, 4H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 25.8, 26.1, 26.2, 33.0, 35.1, 38.8, 168.1, 169.5. HRMS (APCI): m/z [M+NH₄]⁺ calc. for [C₁₂H₂₁N₂O₄]⁺ 257.1501, found 257.1506. C₁₂H₁₇NO₄ (239.27).

Succinimidyl trifluoroacetate (34).¹² **22** (0.35 g, 3.04 mmol) was dissolved in THF (6 mL), trifluoroacetic acid anhydride (**21**) (0.90 mL, 6.38 mmol) was added dropwise and the solution stirred at rt for 3 h. After evaporation of the solvent, toluene (3 mL) was added and evaporated (3x) to obtain **34** (0.64 g, 3.04 mmol, 100%) as a white solid. ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 2.59 (s, 4H). C₆H₄F₃NO₄ (211.10).

N-tert-Butoxy carbonyl-N'-[2(tert-butoxy carbonylamino) ethyl] amino carbonyl-S-methyl isothioure a minor of the second structure of the second stru

(38).^{1, 13} A solution of *tert*-butyl (2-aminoethyl)carbamate **(36)** (0.62 g, 3.87 mmol) and DIPEA (1.91 mL, 11.2 mmol) in anhydrous CH_2Cl_2 (7 mL) was added dropwise to an ice-cold solution of triphosgene (0.57 g, 1.92 mmol) in anhydrous CH_2Cl_2 (5 mL). The reaction mixture was stirred at rt for 30 min, N-Boc-S-methyl-isothiourea **(35)** (0.79 g, 4.93 mmol) was added, and after 1.5 h, the solvent was removed by evaporation at reduced pressure. The crude product was purified by column chromatography (eluent CH_2Cl_2 /ethyl acetate 98:2 to 90:10) to obtain **38** (1.03 g, 2.74 mmol, 71%) as a white solid. ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 1.37 (s, 9H), 1.44 (s, 9H), 2.28 (s, 3H), 2.97-3.11 (m, 4H), 6.82 (t, *J* 5.2 Hz, 1H), 7.72 (t, *J* 5.3 Hz, 1H), 12.32 (br s, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ (ppm) 13.5, 27.5, 28.1, 39.5, 39.8, 77.6, 82.1, 150.1, 155.6, 161.5, 164.8. HRMS (ESI): m/z [M+H]⁺ calc. for [C₁₅H₂₉N₄O₅S]⁺ 377.1859, found 377.1866. C₁₅H₂₈N₄O₅S (376.47).

N-tert-Butoxycarbonyl-N'-[3(tert-butoxycarbonylamino)propyl]aminocarbonyl-S-methylisothiourea (39).¹³ A solution of *tert*-butyl (3-aminopropyl)carbamate (**37**) (5.00 g, 28.7 mmol) and DIPEA (14.7 mL, 86.1 mmol) in anhydrous CH₂Cl₂ (50 mL) was added dropwise to an ice-cold solution of triphosgene (4.26 g, 14.4 mmol) in anhydrous CH₂Cl₂ (45 mL). The reaction mixture was stirred at rt for 30 min, N-Boc-S-methylisothiourea (**35**) (6.55 g, 34.4 mmol) was added, and after 2 h, the solvent was removed by evaporation at reduced pressure. The crude product was purified by column chromatography (eluent CH_2Cl_2 /ethyl acetate 98:2 to 96:4; eluent light petroleum/ethyl acetate 87:13 to 82:18) to obtain **39** (5.56g, 14.2 mmol, 50%) as a yellowish oil. ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 1.37 (s, 9H), 1.44 (s, 9H), 1.50-1.60 (m, 2H), 2.28 (s, 3H), 2.87-2.97 (m, 2H), 2.99-3.07 (m, 2H), 6.76 (t, *J* 6.8 Hz, 1H)), 7.73 (t, *J* 5.8 Hz, 1H), 12.39 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ (ppm) 13.6, 27.6, 28.2, 29.5, 37.1, 37.7, 77.4, 82.1, 150.2, 155.6, 161.9, 164.8. HRMS (ESI): m/z [M+H]⁺ calc. for [C₁₆H₃₀N₄O₅SNa]⁺ 413.1835, found 413.1832. C₁₆H₃₀N₄O₅S (390.50).

(R)-N α -Diphenylacetyl-N ω -(aminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hv**drotrifluoroacetate)** (41).¹ (R)-N'-(4-tert-Butoxybenzyl)-N α -(2,2-diphenylacetyl)ornithinamide (40) (1.31 g, 3.49 mmol) and N-tert-butoxycarbonyl-N'-[2(tert-butoxycarbonylamino)ethyl]aminocarbonyl-Smethylisothiourea (38) (1.50 g, 3.08 mmol) were dissolved in CH₂Cl₂ (30 mL). HgCl₂ (1.26 g, 4.62 mmol) and DIPEA (1.31 mL, 7.70 mmol) were added and the mixture was stirred at rt for 1 h to afford the crude product that was purified by column chromatography (eluent CH_2Cl_2 /ethyl acetate 1:1). The purified product was dissolved in CH₂Cl₂ (7.5 mL), the reaction mixture was cooled to 0°C and TFA (7.5 mL) was added. After 1 h, the mixture was allowed to come to rt and stirred overnight. The solvent was evaporated, and the crude product purified by HPLC (gradient: 0-35 min, A/B 85:15–38:62, $t_{\rm R}$ = 16 min) to obtain **41** (372.11 mg, 47 mmol, 68%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 2.93 (br s, 2H), 3.18-3.26 (m, 2H), 3.33-3.38 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.61 (br s, 1H), 7.89 (br s, 3H), 8.36 (t, / 5.7 Hz, 1H), 8.42-8.65 (br s, 2H, interfering with the next signal), 8.49 (d, / 8.1 Hz, 1H), 9.05 (br s, 1H), 9.33 (br s, 1H), 10.81 (br s, 1H). 13 C NMR (151 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 37.2, 38.5, 40.4, 41.6, 52.3, 55.9, 115.0, 117.0 (q, / 297.1 Hz) (TFA), 126.57, 126.61, 128.17, 128.21, 128.40, 128.50, 128.52, 129.13, 140.3, 140.5, 153.7, 154.4, 156.3, 158.9 (q, / 31.6 Hz) (TFA), 170.97, 171.04. HRMS (ESI): m/z $[M+H]^+$ calc. for $[C_{30}H_{38}N_7O_4]^+$ 560.2985, found 560.2986. $C_{30}H_{37}N_7O_4 \times C_4H_2F_6O_4$ (559.67 + 228.05).

(R)-N^{\arrow}-Diphenylacetyl-N^{\u0394}-(aminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hv**drotrifluoroacetate)** (42).¹⁴ (R)-N'-(4-*tert*-Butoxybenzyl)-N α -(2,2-diphenylacetyl)ornithinamide (40) (150 mg, 0.31 mmol) and N-tert-butoxycarbonyl-N'-[3(tert-butoxycarbonylamino)propyl]aminocarbonyl-Smethylisothiourea (39) (132 mg, 0.34 mmol) were dissolved in CH₂Cl₂ (30 mL). HgCl₂ (126 mg, 0.46 mmol) and DIPEA (100 mg, 0.76 mmol) were added and the mixture was stirred at rt overnight to afford the crude product that was purified by column chromatography (eluent CH_2Cl_2 /ethyl acetate 10:1 to 1:1). The purified product was dissolved in a mixture (10.5 mL) of CH₂Cl₂, TFA and water (1:1:0.1). Afterwards, CH₂Cl₂ (20 mL) was added, the organic solvent evaporated (2x) at reduced pressure, and the crude product purified by HPLC (gradient: 0-35 min, A/B 85:15–38:62, t_{R} = 19 min) to obtain **42** (112 mg, 0.14 mmol, 45%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ (ppm) 1.36-1.50 (m, 2H), 1.50-1.60 (m, 1H), 1.63-1.79 (m, 3H), 2.77-2.88 (m, 2H), 3.14-3.26 (m, 4H), 4.10-4.21 (m, 2H), 4.29-4.38 (m, 1H), 5.13 (s, 1H), 6.64-6.71 (m, 2H), 6.98-7.03 (m, 2H), 7.18-7.24 (m, 2H), 7.26-7.34 (m, 8H), 7.67 (br s, 1H), 7.87 (br s, 3H), 8.37 (t, / 5.5 Hz, 1H), 8.41-8.61 (m, 3H), 9.03 (br s, 1H), 9.36 (br s, 1H), 10.78 (br s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆): δ (ppm) 24.6, 27.3, 29.4, 36.5, 36.7, 40.4, 41.7, 52.4, 56.0, 115.0, 117.0 (q, / 298.4 Hz) (TFA), 126.59, 126.62, 128.18, 128.22, 128, 4, 128.52, 128.57, 129.2, 140.3, 140.5, 153.8, 154.1, 156.3, 159.2 (q, / 32.1 Hz) (TFA), 171.04, 171.08. HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₁H₄₀N₇O₄]⁺ 574.3142, found 574.3142. C₃₁H₃₉N₇O₄ × C₄H₂F₆O₄ (573.70 + 228.05).

(**R**)-N^α-**Diphenylacetyl-N^ω-(acetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide** hydrotrifluoroacetate (53). Compound 53 was prepared using *General Procedure A*, the reactants 41 (34.6 mg, 43.9 µmol), succinimidyl acetate (43) (7.3 mg, 32.5 µmol), DIPEA (29 µL, 166 µmol) and the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–45:55, $t_R = 20$ min) afforded 53 (22.4 mg, 31.3 µmol, 71%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.51-1.61 (m, 1H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.10-3.27 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.71 (m, 2H), 6.98-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.33 (m, 8H), 7.50-7.56 (m, 1H), 7.90-8.00 (m, 1H), 8.36 (t, *J* 5.8 Hz , 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.25 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 22.6, 24.6, 29.4, 38.1, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.57, 126.61, 128.17, 128.21, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.9 (q, *J* 33.2 Hz) (TFA), 169.6, 170.99,

171.03. RP-HPLC (Method A, 220 nm): 100% ($t_R = 11.8 \text{ min}$, k = 3.5). HRMS (ESI): m/z [M+H]⁺ calc. for [$C_{32}H_{40}N_7O_5$]⁺ 602.3085, found 602.3092. $C_{32}H_{39}N_7O_5 \times C_2HF_3O_2$ (601.71 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(acetylylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (54). Compound 54 was prepared using *General Procedure A*, the reactants 42 (26.3 mg, 32.8 µmol), succinimidyl acetate (43) (5.1 mg, 32 µmol), DIPEA (22 µL, 126 µmol) and the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–45:55, $t_R = 20$ min) afforded 54 (15.7 mg, 18.6 µmol, 57%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.52-1.60 (m, 3H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.03-3.08 (m, 2H), 3.08-3.13 (m, 2H), 3.16-3.24 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.49 (t, *J* 5.1 Hz, 1H), 7.88 (t, *J* 5.4 Hz, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.40 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.0 Hz, 1H), 8.94 (br s, 1H), 9.30 (br s, 1H), 10.16 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 22.6, 24.6, 29.2, 29.4, 36.0, 37.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.4 (TFA), 117.4 (TFA), 126.57, 126.60, 128.17, 128.20, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.7, 156.3, 158.7 (q, *J* 34.0 Hz) (TFA), 169.3, 170.99, 171.03. RP-HPLC (Method A, 220 nm): 100% ($t_R = 11.9$ min, k = 3.6). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₃H₄₂N₇O₅]⁺ 616.3242 ;found 616.3250. C₃₃H₄₁N₇O₅ × C₂HF₃O₂ (615.74 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(propionylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (55). Compound 55 was prepared using *General Procedure A*, the reactants 42 (26.3 mg, 32.8 µmol), succinimidyl propionate (44) (6.1 mg, 35.6 µmol), DIPEA (22 µL, 126 µmol) and the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:10–45:55, $t_R = 22$ min) afforded 55 (17.5 mg, 23.5 µmol, 72%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 0.99 (t, 3H, *J* 7.6 Hz), 1.36-1.50 (m, 2H), 1.50-1.60 (m, 3H), 1.64-1.72 (m, 1H), 2.07 (q, *J* 7.6 Hz, 2H), 3.04-3.13 (m, 4H), 3.16-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.50 (br s, 1H), 7.80 (t, *J* 5.5 Hz, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.41 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H, interfering with previous signal), 10.21 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 10.0, 24.6, 28.5, 29.28, 29.42, 35.9, 37.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.5 (TFA), 117.5 (TFA), 126.57, 126.60, 128.16, 128.20, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.63, 153.71, 156.3, 158.8 (q, *J* 33.6 Hz) (TFA), 170.99, 171.03, 170.07. RP-HPLC (Method A, 220 nm): 99% ($t_R = 12.4$ min, k = 3.8). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₄H₄₄N₇O₅]⁺ 630.3398, found 630.3403. C₃₄H₄₃N₇O₅ × C₂HF₃O₂ (629.76 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(2-fluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (56). Compound **56** was prepared using *General Procedure C* and the reactants **41** (99.71 mg, 126.6 µmol), 2-fluoroacetic acid (**46**) (28.99 mg, 371.5 µmol), DIPEA (55 µL, 315.7 µmol), DCC (39.44 mg, 191.2 µmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, $t_R = 21$ min) afforded **56** (26.6 mg, 36.3 µmol, 29%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ (ppm) 1.36-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.71 (m, 1H), 3.17-3.26 (m, 6H), 4.09-4.18 (m, 2H), 4.30-4.35 (m, 1H), 4.78 (d, *J* 47.1 Hz, 2H), 5.12 (s, 1H), 6.65-6.68 (m, 2H), 6.98-7.01 (m, 2H), 7.18-7.24 (m, 2H), 7.27-7.30 (m, 8H), 7.56 (br s, 1H), 8.26 (t, *J* 5.0 Hz, 1H), 8.35 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.48 (d, *J* 8.1 Hz, 1H), 8.97 (br s, 1H), 9.31 (br s, 1H), 10.36 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ (ppm) 24.6, 29.4, 37.8, 38.8, 40.4, 41.6, 52.3, 55.9, 80.0 (d, *J* 180.4 Hz), 115.0, 116.0 (TFA), 118.0 (TFA), 126.58, 126.62, 128.17, 128.22, 128.43, 128.51, 128.54, 129.1, 140.3, 140.5, 153.7, 154.0, 156.3, 159.0 (q, *J* 32.2 Hz) (TFA), 167.5 (d, *J* 18.2 Hz), 171.01, 171.05. RP-HPLC (Method A, 220 nm): 98% ($t_R = 12.6$ min, k = 3.9). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₃₉FN₇O₅]⁺ 620.2991, found 620.2999. C₃₂H₃₈FN₇O₅ × C₂HF₃O₂ (619.70 + 114.02).

(R)-N^α-**Diphenylacetyl-N**^ω-**(2,2-difluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (57).** Compound **57** was prepared using *General Procedure C* and the reactants **41** (66.4 mg, 84.3 µmol), 2,2-difluoroacetic acid (**47**) (15 µL, 238.4 µmol), DIPEA (36 µL, 206.7 µmol), DCC (26.3 mg, 127.5 µmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, $t_{\rm R}$ = 21 min) afforded **57** (10.0 mg, 13.3 µmol, 16%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.35-1.48 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.70 (m, 1H), 3.17-3.27 (m, 6H), 4.08-4.19 (m, 2H), 4.30-4.35 (m, 1H), 5.12 (s, 1H), 6.19 (t, *J* 53.7 Hz, 1H), 6.64-6.69 (m, 2H), 6.97-7.00 (m, 2H), 7.18-7.24 (m, 2H), 7.25-7.31 (m, 8H), 7.58 (br s, 1H), 8.35 (t, *J* 5.7 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.48 (d, *J* 8.1 Hz, 1H), 8.86 (t, *J* 5.1 Hz, 1H), 8.94 (br s, 1H), 9.30 (br s, 1H), 10.23 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.2, 38.4, 40.3, 41.6, 52.3, 55.9, 108.5 (t, *J* 247.2 Hz), 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, *J* 31.4 Hz) (TFA), 162.6 (t, *J* 25.1 Hz), 170.97, 171.02. RP-HPLC (Method A, 220 nm): 98% (t_R = 12.8 min, k = 4.0). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₃₈F₂N₇O₅]⁺ 638.2902, found 638.2905. C₃₂H₃₇F₂N₇O₅ × C₂HF₃O₂ (637.69 + 114.02).

(R)-Nα-Diphenylacetyl-Nω-(trifluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (58). Compound **58** was prepared using *General Procedure A*, the reactants **41** (30 mg, 38.1 µmol), succinimidyl trifluoroacetate (**34**) (20 mg, 88.3 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, t_R = 19) afforded **58** (6.24 mg, 8.1 µmol, 21%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ (ppm) 1.36-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.71 (m, 1H), 3.17-3.23 (m, 2H), 3.24-3.28 (m, 2H), 3.29-3.32 (m, 2H), 4.08-4.21 (m, 2H), 4.30-4.37 (m, 1H), 5.12 (s, 1H), 6.66-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.61 (t, *J* 5.5 Hz, 1H), 8.36 (t, *J* 5.9 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.48 (d, *J* 8.1 Hz, 1H), 8.91 (br s, 1H), 9.30 (br s, 1H), 9.48 (t, *J* 5.2 Hz, 1H), 10.17 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ (ppm) 24.6, 29.4, 36.5, 38.1, 38.9, 40.4, 41.6, 52.3, 56.0, 114.96 (TFA), 115.03, 116.9 (TFA), 117.1 (q, *J* 298.6 Hz), 126.58, 126.61, 128.17, 128.21, 128.42, 128.51, 128.56, 129.1, 140.3, 140.5, 153.7, 154.2, 156.5, 156.8 (the last signals belong to a quartet that is not fully resolved), 158.8 (q, *J* 31.7 Hz) (TFA), 171.04, 171.07. RP-HPLC (Method A, 220 nm): 98% (t_R = 13.6 min, k = 4.3). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₃₇F₃N₇O₅]⁺ 656.2803, found 656.2814. C₃₂H₃₆F₃N₇O₅ × C₂HF₃O₂ (655.68 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(2-chloroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (59). Compound 59 was prepared using *General Procedure B* and the reactants 41 (106.74 mg, 135.5 µmol), 2-chloroacetic acid (48) (37.4 mg, 395.8 µmol), DCC (38 mg, 184.2 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 18$ min) afforded 59 (16.61 mg, 22.14 µmol, 16%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.37-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), 4.05 (s, 2H), 4.10-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.31-8.35 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.45 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.32 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.6, 38.7, 40.3, 41.6, 42.6, 52.3, 55.9, 115.01, 115.9 (TFA), 117.9 (TFA), 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.53, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, *J* 32.5 Hz) (TFA), 166.3, 170.98, 171.03. RP-HPLC (Method A, 220 nm): 100% ($t_R = 12.8$ min, k = 4.0). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₃₉ClN₇O₅]⁺ 636.2696, found 636.2699. C₃₂H₃₈ClN₇O₅ × C₂HF₃O₂ (636.15 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(2-bromoacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (60). Compound **60** was prepared using *General Procedure B* and the reactants **41** (93.44 mg, 118.6 µmol), 2-bromoacetic acid (**49**) (37.5 mg, 269.9 µmol), DCC (31.1 mg, 150.7 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 19$ min) afforded **60** (15.40 mg, 19.4 µmol, 16%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.37-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), 3.85 (s, 2H), 4.10-4.20 (m, 2H), 4.31- 4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.31-8.35 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.45 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.97 (br s, 1H), 9.31 (br s, 1H), 10.32 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.40, 29.44, 38.66, 38.73, 40.4, 41.6 52.3, 55.9, 115.0, 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, *J* 32.9 Hz), 166.5, 170.97, 171.03. RP-HPLC (Method A, 220 nm): 99% ($t_R = 12.9$ min, k = 4.0). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₃₉BrN₇O₅]⁺ 680.2191, found 680.2193. C₃₂H₃₈BrN₇O₅ × C₂HF₃O₂ (680.60 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(glycinylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hydrotrifluoroacetate) (61). Compound **61** was prepared using *General Procedure A*, the reactants **41** (41.4 mg, 52.6 µmol), succinimidyl N-Boc-glycinate (**25**) (17.6 mg, 64.6 µmol), DIPEA (35 µL, 200.9 µmol) and the solvent DMF (1 mL) Additionally, the crude product was poured into a solution of 100 mL water (5% acetonitrile, 0.5% TFA). After lyophilization, the crude product was dissolved in a mixture (2 mL) of CH₂Cl₂ and TFA (1:1) and stirred at rt for 2 h. The solvent was evaporated, and the crude product purified by preparative HPLC (gradient: 0-30 min, A/B 85:15–40:60, $t_R = 15$ min) which afforded **61** (20.5 mg, 24.4 µmol, 46%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.26 (m, 6H), 3.53 (s, 2H), 4.09-4.19 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.64 (br s, 1H), 8.08 (br s, 3H), 8.36 (t, *J* 5.7 Hz, 1H), 8.42-8.56 (m, 4H), 9.02 (br s, 1H), 9.34 (br s, 1H), 10.73 (br s, 1H). ¹³C NMR (150 MHz, DMSO d_6): δ (ppm) 24.6, 29.4, 38.3, 38.7, 40.0, 40.3, 41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.0 (TFA), 126.58, 126.61, 128.17, 128.21, 128.41, 128.51, 128.54, 129.1, 140.3, 140.5, 153.7, 154.1, 156.3, 158.9 (q, *J* 31.7 Hz) (TFA), 166.2, 171.01, 171.06. RP-HPLC (Method A, 220 nm): 96% ($t_R = 10.9$ min, k = 3.2). HRMS (ESI): m/z [M+H]⁺ calc. for [$C_{32}H_{41}N_8O_5$]+ 617.3194, found 617.3205. $C_{32}H_{40}N_8O_5 \times C_4H_2F_6O_4$ (616.31 + 228.04).

(**R**)-N^α-**Diphenylacetyl-N^ω-(2-hydroxyacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (62). Under assay conditions, 60 is stable for 24 h. Degradation of compound 60 led to a 1:1 mixture of 60 and 62 after 6 months. Purification by preparative HPLC (gradient: 0-30 min,** A/B 85:15–38:62, t_R = 15 min) afforded 62 as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.35-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.25 (m, 6H), 3.81 (s, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.12 (s, 1H), 5.50 (br s, 1H), 6.50-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.30 (m, 8H), 7.52 (br s, 1H), 7.88 (t, *J* 5.2 Hz, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.40 (br s, 2H, interfering with two surrounding signals), 8.48 (d, *J* 8.1 Hz, 1H), 8.89 (br s, 1H), 9.29 (br s, 1H), 9.89 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 37.7, 39.1, 40.3, 41.6 52.3, 55.9, 61.4, 115.0, 126.57, 126.61, 128.16, 128.20, 128.41, 128.49, 128.50, 129.1, 140.3, 140.4, 153.5, 153.8, 156.3, 158.3 (q, *J* 31.6 Hz) (TFA), 170.95, 171.00, 172.3. RP-HPLC (Method A, 220 nm): 96% (t_R = 11.5 min, k = 3.5). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₄₀N₇O₆]⁺ 618.3035, found 618.3038. C₃₂H₃₉N₇O₅ × C₂HF₃O₂ (617.71 + 114.02).

(R)-N^α-**Diphenylacetyl-N**^ω-**(acrylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (63).** Compound **63** was prepared using *General Procedure B* and the reactants **41** (97.33 mg, 123.5 µmol), acrylic acid (**52**) (20 µL, 291.4 µmol), DCC (25 mg, 121.2 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–40:60, $t_R = 18$ min) afforded **63** (9.0 mg, 12.4 µmol, 10%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ (ppm) 1.36-1.50 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.72 (m, 1H), 3.18-3.23 (m, 4H), 3.23-3.27 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1H), 5.16 (s, 1H), 5.59 (dd, ²J 2.1 Hz, ³J 10.1 Hz, ³J 10.1 Hz, 1H), 6.08 (dd, ²J 2.1 Hz, ³J 17.1Hz, 1H), 6.20 (dd, ²J 10.1 Hz, ³J 17.1 Hz, 1H), 6.65-6.70 (m, 2H), 6.98-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.23 (t, J 5.3 Hz, 1H), 8.36 (t, J 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.18 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ (ppm) 24.6, 29.4, 38.1, 39.0, 40.3, 41.6, 52.3, 55.9, 115.0, 125.3, 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 131.6, 140.3, 140.5, 153.6, 153.9, 156.3, 158.4 (q, J 32.1 Hz) (TFA), 165.0, 170.97, 171.02. RP-HPLC (Method A, 220 nm): 98% (*t*_R = 12.4 min, *k* = 3.8). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₃H₄₀N₇O₅]⁺ 614.3085, found 614.3089. C₃₃H₃₉N₇O₅ × C₂HF₃O₂ (613.72 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(3-chloropropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (64). Compound **64** was prepared using *General Procedure B* and the reactants **41** (101.15 mg, 128.4 µmol), 3-chloropropionic acid (**50**) (20.31 mg, 187.2 µmol), DCC (33.02 mg, 160 µmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, $t_R = 21$ min) afforded **64** (9.16 mg, 12.0 µmol, 9%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.72 (m, 1H), 2.56 (t, *J* 6.4 Hz, 2H), 3.14-3.23 (m, 6H), 3.77 (t, *J* 6.4 Hz, 2H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.26 (m, 2H), 7.26-7.32 (m, 8H), 7.51 (br s, 1H), 8.12 (br s, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.97 (br s, 1H), 9.32 (br s, 1H), 10.34 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.1, 38.3, 39.1, 40.3, 40.9, 41.6, 52.3, 55.9, 115.0, 116.0 (TFA), 118.0 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, *J* 31.6 Hz) (TFA), 169.2, 170.98, 171.03. RP-HPLC (Method A, 220 nm): 96% ($t_R = 12.8$ min, k = 4.0). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₃H₄₁ClN₇O₅]⁺ 650.2852, found 650.2854. C₃₃H₄₀ClN₇O₅ × C₂HF₃O₂ (650.18 + 114.02).

(R)-N^α**-Diphenylacetyl-N**^ω**-(3-bromopropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (65).** Compound **65** was prepared using *General Procedure B* and the reactants **41** (97.3 mg, 123.5 µmol), 3-bromopropionic acid (**51**) (80 mg, 522.9 µmol), DCC (30 mg, 145.4 μmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, $t_R = 21$ min) afforded **65** (12.0 mg, 14.8 μmol, 12%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO-*d*₆): δ (ppm) 1.35-1.49 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.71 (m, 1H), 2.67 (t, *J* 6.5 Hz, 2H), 3.14-3.22 (m, 6H), 3.63 (t, *J* 6.5 Hz, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.48-7.52 (m, 1H), 8.10-8.13 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.42 (br s, 2H, interfering with two surrounding signals), 8.48 (d, *J* 8.48 Hz, 1H), 8.93 (br s, 1H), 9.30 (br s, 1H), 10.14 (br s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ (ppm) 24.6, 29.36, 29.40, 38.1, 38.5, 38.9, 40.3, 41.6 52.3, 55.9, 115.0, 126.57, 126.60, 128.16, 128.20, 128.41, 128.49, 128.51, 129.1, 140.3, 140.5, 153.6, 153.8, 156.3, 158.6 (q, *J* 33.4 Hz) (TFA), 169.5, 170.96, 171.02. RP-HPLC (Method A, 220 nm): 97% ($t_R = 13.0 \text{ min}, k = 4.1$). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₂H₄₁BrN₇O₅]⁺ 694.2347, found 694.2355. C₃₃H₄₀BrN₇O₅ × C₂HF₃O₂ (694.63 + 114.02).

$(R)-N^{\alpha}-Diphenylacetyl-N^{\omega}-(2-methylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)ar-$

gininamide hydrotrifluoroacetate (66). Compound **66** was prepared using *General Procedure A*, the reactants **41** (30.98 mg, 39.3 µmol), succinimidyl 2-methylpropionate (**23**) (7.76 mg, 41.9 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 17$ min) afforded **66** (24.54 mg, 33.0 µmol, 84%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 0.99 (d, *J* 6.9 Hz, 6H), 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 2.32 (septet, *J* 6.9 Hz, 1H), 3.12-3.18 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.30 (m, 8H), 7.49 (br s, 1H), 7.81-7.84 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.97 (br s, 1H), 9.31 (br s, 1H), 10.33 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 19.5, 24.6, 29.4, 34.1, 38.0, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.7 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, *J* 33.1 Hz) (TFA), 170.97, 171.03, 173.0. RP-HPLC (Method B, 220 nm): 99% ($t_R = 15.8$ min, k = 4.5). HRMS (ESI): m/z [M+H]+ calc. for [C₃₄H₄₄N₇O₅]+ 630.3398, found 630.3410. C₃₄H₄₃N₇O₅ × C₂HF₃O₂ (629.76 + 114.02).

(**R**)-N^α-**Diphenylacetyl-N^ω-(2,2-dimethylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (67).** Compound 67 was prepared using *General Procedure A*, the reactants **41** (31.06 mg, 39.4 µmol), succinimidyl 2,2-dimethylpropionate (**24**) (14.09 mg, 70.7 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 90:10–30:70, $t_R = 19$ min) afforded **67** (26.60 mg, 35.1 µmol, 89%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.08 (s, 9H), 1.36-1.50 (m, 2H), 1.50-1.59 (m, 1H), 1.63-1.72 (m, 1H), 3.13-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.47 (br s, 1H), 7.52-7.57 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.0 Hz, 1H), 8.97 (s, 1H), 9.31 (br s, 1H), 10.38 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 27.4, 29.4, 38.0, 38.5, 39.01, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.7 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, 128.50, 128.53, 129.13, 140.3, 140.5, 153.7, 154.0, 156.3, 158.9 (q, *J* 32.8 Hz) (TFA), 170.98, 171.03, 177.9. RP-HPLC (Method B, 220 nm): 99% ($t_R = 17.5$ min, k = 5.1). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₅H₄₆N₇O₅]⁺ 644.3555, found 644.3570. C₃₅H₄₅N₇O₅ × C₂HF₃O₂ (643.79 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(cyclopropoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (68). Compound **68** was prepared using *General Procedure A*, the reactants **41** (30.81 mg, 39.1 µmol), succinimidyl cyclopropanecarboxylat (**29**) (11.13 mg, 60.8 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 17$ min) afforded **68** (19.36 mg, 26.1 µmol, 67%) as a white fluffy solid.¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 0.61-0.69 (m, 4H), 1.38-1.57 (m, 4H), 1.63-1.71 (m, 1H), 3.14-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.01 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.54 (br s, 1H), 8.17 (s, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H) , 8.97 (s, 1H), 9.31 (s, 1H), 10.20 (s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 6.3, 13.6, 24.6, 29.4, 38.2, 39.3, 40.3, 41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, *J* 32.7 Hz) (TFA), 170.97, 171.02, 173.0. RP-HPLC (Method B, 220 nm): 99% ($t_R = 17.0$ min, k = 4.9). HRMS (ESI): m/z [M+H]+ calc. for [$C_{34}H_{42}N_7O_5$]+ 628.3244, found 628.3255. $C_{34}H_{41}N_7O_5 \times C_2HF_3O_2$ (627.75 + 114.02). **(R)-N^α-Diphenylacetyl-N^ω-(cyclobutoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (69).** Compound **69** was prepared using *General Procedure A*, the reactants **41** (30.27 mg, 38.4 µmol), succinimidyl cyclobutanecorboxylat (**30**) (11.46 mg, 63.1 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 18$ min) afforded **69** (20.90 mg, 27.7 µmol, 72%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.35-1.50 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.77 (m, 2H), 1.82-1.90 (m, 1H), 1.96-2.02 (m, 2H), 2.07-2.15 (m, 2H), 2.96 (q, *J* 8.5 Hz, 1H), 3.12-3.17 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.36 (m, 1H), 1.53 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.51 (br s, 1H), 7.74 (br s, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.24 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 17.7, 24.7, 29.4, 36.5, 38.1, 38.7, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.6 (TFA), 117.6 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, *J* 33.6 Hz) (TFA), 170.97, 171.02, 174.3. RP-HPLC (Method B, 220 nm): 96% ($t_R = 16.4$ min, k = 4.7). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₅H₄₄N₇O₅]⁺ 642.3398, found 642.3406. C₃₅H₄₃N₇O₅ × C₂HF₃O₂ (641.77 + 114.02).

 $(R)-N^{\alpha}-Diphenylacetyl-N^{\omega}-(cyclopentoylaminoethyl) aminocarbonyl (4-hydroxybenzyl) arginina-$

mide hydrotrifluoroacetate (70). Compound **70** was prepared using *General Procedure A*, the reactants **41** (30.82 mg, 39.1 μmol), succinimidyl cyclopentanecarboxylat (**31**) (10.13 mg, 48.0 μmol), DIPEA (20 μL, 114.8 μmol) and the solvent DMF (100 μL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, t_R = 19 min) afforded **70** (15.90 mg, 20.7 μmol, 53%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.35-1.64 (m, 10H), 1.65-1.75 (m, 3H), 3.13 (m, 4H), 3.18-3.23 (m, 2H), 4.09-4.19 (m, 2H), 4.31 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.50 (br s, 1H), 7.86 (br s, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.96 (br s, 1H), 9.32 (br s, 1H), 10.27 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 24.6, 25.6, 29.4, 29.9, 38.1, 39.1, 40.3, 41.6, 44.3, 52.3, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.56, 126.60, 128.15, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, *J* 33.2 Hz) (TFA), 170.97, 171.02, 175.7. RP-HPLC (Method B, 220 nm): 99% (t_R = 17.0 min, k = 4.9). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₆H₄₆N₇O₅]⁺ 656.3555, found 656.3571. C₃₆H₄₅N₇O₅ × C₂HF₃O₂ (655.80 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(cyclohexoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (71). Compound 71 was prepared using *General Procedure A*, the reactants 41 (29.0 mg, 36.8 µmol), succinimidyl cyclohexanecarboxylat (32) (11.3 mg, 54.0 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, t_R = 20.0 min) afforded 71 (17.45 mg, 22.3 µmol, 60.6%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.10-1.22 (m, 3H), 1.26-1.35 (m, 2H), 1.36-1.50 (m, 2H), 1.51-1.62 (m, 2H), 1.64-1.71 (m, 5H), 2.02-2.08 (m, 1H), 3.11-3.17 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.19 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.47 (br s, 1H), 7.75-7.80 (m, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H), 10.25 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 25.3, 25.5, 29.2, 29.4, 37.9, 39.3, 40.3, 41.6, 44.1, 52.3, 55.9, 115.0, 115.6 (TFA), 117.6 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, *J* 32.4 Hz) (TFA), 170.97, 171.02, 175.6. RP-HPLC (Method B, 220 nm): 99% (t_R = 18.0 min, k = 5.2). HRMS (ESI): m/z [M + H]⁺ calc. for [C₃₇H₄₈N₇O₅]⁺ 670.3711, found 670.3722. C₃₇H₄₇N₇O₅ × C₂HF₃O₂ (669.83 + 114.02).

(**R**)-**N**^α-**Diphenylacetyl-N**^ω-(cyclohexylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (72). Compound 72 was prepared using *General Procedure A*, the reactants 41 (30.6 mg, 38.8 µmol), succinimidyl cyclohexylacetate (33) (12.7 mg, 56.9 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, t_R = 21 min) afforded 72 (15.8 mg, 19.8 µmol, 51%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 0.82-0.92 (m, 2H), 1.06-1.21 (m, 3H), 1.37-1.50 (m, 2H), 1.50-1.74 (m, 8H), 1.93 (d, *J* 6.9 Hz, 2H), 3.15 (br s, 4H), 3.18-3.22 (m, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.97-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.48 (br s, 1H), 7.87 (br s, 1H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.25 (s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 24.6, 25.6, 25.8, 29.4, 32.5, 34.6, 37.9, 39.3, 40.3, 41.6, 43.4, 52.3, 55.9, 115.0, 126.56, 126.59, 128.15, 128.19, 128.40, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, *J* 34.5 Hz) (TFA), 170.96, 171.02, 171.7. RP-HPLC (Method B, 220 nm): 100% (t_R = 16.0 min, k = 4.6). HRMS (ESI): m/z [M+H]⁺ calc. for [$C_{38}H_{50}N_7O_5$]⁺ 684.3868, found 684.3887. $C_{38}H_{49}N_7O_5 \times C_2HF_3O_2$ (683.85 + 114.02).

(R)-N^α-Diphenylacetyl-N^ω-(benzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (73). Compound **73** was prepared using *General Procedure A*, the reactants **41** (30.74 mg, 39.0 µmol), succinimidyl benzoate (**26**) (13 mg, 59.3 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–40:60, $t_R = 21$ min) afforded **73** (12.0 mg, 15.4 µmol, 39%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.50 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 2H), 3.28-3.33 (m, 2H), 3.34-3.42 (m, 2H, overlaid with water), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.43-7.48 (m, 2H), 7.50-7.55 (m, 1H), 7.58-7.64 (m, 1H), 7.82-7.87 (m, 2H), 8.36 (t, *J* 5.7 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.0 Hz, 1H), 8.56 (t, *J* 5.5 Hz, 1H), 8.96 (br s, 1H), 9.32 (br s, 1H), 10.24 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.8, 39.0, 40.3, 41.6, 52.3, 55.9, 115.0, 126.56, 126.60, 127.20, 128.16, 128.20, 128.24, 128.41, 128.49, 128.52, 129.1, 131.2, 134.4, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, *J* 31.5 Hz) (TFA), 166.6, 170.98, 171.03. RP-HPLC (Method A, 220 nm): 99% ($t_R = 13.7$ min, k = 4.3). HRMS (ESI): m/z [M+H]⁺ calc. for [C_{37H42}N₇O₅]⁺ 664.3242, found 664.3250. C_{37H41}N₇O₅ × C₂HF₃O₂ (663.78 + 114.02).

(R)-Nα-Diphenylacetyl-Nω-(4-fluorobenzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (74). Compound 74 was prepared using *General Procedure A*, the reactants 41 (30.95 mg, 39.3 µmol), succinimidyl 4-fluorobenzoate (45) (10.21 mg, 23.4 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 80:20–50:50, t_R = 20 min) afforded 74 (13.8 mg, 17.3 µmol, 44%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.49 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.23 (m, 2H), 3.27-3.32 (m, 2H), 3.35-3.40 (m, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.01 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.30 (m, 10H), 7.30-7.31 (m, 1H), 7.64 (br s, 1H), 7.89-7.93 (m, 2H), 8.36 (t, *J* 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.60 (t, *J* 5.5 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.8, 39.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.14 (d, *J* 21.7 Hz), 126.55, 126.59, 128.14, 128.19, 128.40, 128.48, 128.51, 129.1, 129.8 (d, *J* 9.0 Hz), 130.9 (d, *J* 3.0 Hz), 140.3, 140.4, 153.6, 153.9, 156.3, 158.4 (q, *J* 30.7 Hz) (TFA), 163.8 (d, *J* 248.3 Hz), 165.5, 170.97, 171.01. RP-HPLC (Method C, 220 nm): 98% (t_R = 22.9 min, k = 6.9). HRMS (ESI): m/z [M+H]+ calc. for [C₃₇H₄₁FN₇O₅]⁺ 682.3148, found 682.3157. C₃₇H₄₀FN₇O₅ × C₂HF₃O₂ (681.77 + 114.0 2).

(R)- N^{α} -Diphenylacetyl- N^{ω} -(phenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (75). Compound **75** was prepared using *General Procedure A*, the reactants **41** (30.18 mg, 38.3 µmol), succinimidyl phenylacetate (**27**) (10.39 mg, 44.6 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, $t_R = 19$ min) afforded **75** (19.64 mg, 24.8 µmol, 65%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.36-1.51 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.14-3.24 (m, 6H), 3.40 (s, 2H), 4.09-4.20 (m, 2H), 4.30-4.38 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.31 (m, 15H), 7.53 (br s, 1H), 8.15 (br s, 1H), 8.36 (t, *J* 5.7 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.0 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H), 10.27 (br s, 1H). ¹³C NMR (151 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.2, 39.1, 40.3, 41.6, 42.4, 52.3, 55.9, 115.0, 115.8 (TFA), 117.8 (TFA), 126.3, 126.57, 126.60, 128.16, 128.20, 128.41, 128.50, 128.52, 128.99 (two carbon signals), 129.13, 136.3, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, *J* 33.6 Hz) (TFA), 170.5, 170.98, 171.03. RP-HPLC (Method B, 220 nm): 99% ($t_R = 17.0$ min, k = 4.9). HRMS (ESI): m/z [M+H]⁺ calc. for [C₃₈H₄₄N₇O₅]⁺ 678.3398, found 678.3414. C₃₈H₄₃N₇O₅ × C₂HF₃O₂ (677.81 + 114.02).

(R)-N^α-**Diphenylacetyl-N**^ω-**(diphenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (76).** Compound **76** was prepared using *General Procedure A*, the reactants **41** (35.81 mg, 45.5 µmol), succinimidyl diphenylacetate (**28**) (26 mg, 84.1 µmol), DIPEA (25 µL, 143.5 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, t_R = 16 min) afforded **76** (15 mg, 17.3 µmol, 38%) as a white fluffy solid. ¹H NMR (600 MHz, DMSO- d_6): δ (ppm) 1.37-1.48 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.14-3.24 (m, 6H), 4.07-4.20 (m, 2H), 4.29-4.37 (m, 1H), 4.90 (s, 1H), 5.12 (s, 1H), 6.65-6.68 (m, 2H), 6.98-7.01 (m, 2H), 7.18-7.24 (m, 4H), 7.26-7.29 (m, 16H), 7.49 (br s, 1H), 8.34-8.38 (m, 2H), 8.42 (br s, 2H, interfering with two surrounding signals), 8.49 (d, *J* 8.1 Hz, 1H), 8.92 (br s, 1H), 9.30 (br s, 1H), 10.18 (br s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ (ppm) 24.6, 29.4, 38.3, 39.0, 40.4, 41.6, 52.3, 55.9, 56.6, 115.0, 116.1 (TFA), 118.1 (TFA), 126.55, 126.58 (two carbon signals), 128.14, 128.17, 128.18, 128.27, 128.34, 128.39 (2 carb.), 128.46, 128.47, 128.49, 129.11, 140.3 (2 carb.), 140.4, 153.6, 153.9, 156.3, 158.6 (q, *J* 30.5 Hz) (TFA), 170.95, 171.01, 171.37. one aromatic carbon was not resolved. RP-HPLC (Method B, 220 nm): 98% (t_R = 19.6 min, k = 5.8). HRMS (ESI): m/z [M+H]⁺ calc. for [C₄₄H₄₈N₇O₅]⁺ 754.3711, found 754.3715. C₄₄H₄₇N₇O₅ × C₂HF₃O₂ (753.90 + 114.02).

(R)-N^{α}-Diphenylacetyl-N^{ω}-(4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dienyl)-2,6-dimethylpyridinioethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate trifluoroacetate (78). DIPEA (2.80 µL, 16 µmol) was added to a solution of compound 41 (3.19 mg, 4.04 µmol) in DMF (50 µL). After 5 min, the fluorescent dye Py-5 (77) (5.74 mg, 15.6 µmol) was added, and the reaction mixture was shaken for 3 h in the dark. Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15– 38:62, t_R = 20 min) afforded 78 (0.94 mg, 0.90 µmol, 22%) as a red solid. RP-HPLC (*Method A*, 220 nm): 95% (t_R = 14.0 min, k = 4.4). HRMS (ESI): m/z [M+H]⁺ calc. for [C₄₄H₄₈N₇O₅]⁺ 821.4497, found 821.4509. C₄₉H₅₇N₈O₄⁺ × C₂HF₃O₂ × C₂F₃O₂⁻ (822.05 + 114.02 + 113.02).

4. ¹H-NMR und ¹³C-NMR Spectra of Compounds 53-76

¹³C-NMR of compound **53**

¹³C-NMR of compound **54**

¹³C-NMR of compound **56**

¹³C-NMR of compound **57**

¹³C-NMR of compound **58**

¹³C-NMR of compound **59**

¹³C-NMR of compound **62**

¹³C-NMR of compound **63**

¹³C-NMR of compound **65**

¹³C-NMR of compound **66**

¹³C-NMR of compound **67**

¹³C-NMR of compound **68**

¹³C-NMR of compound **69**

¹³C-NMR of compound **71**

¹³C-NMR of compound **73**

¹³C-NMR of compound **74**

¹³C-NMR of compound **75**

5. RP-HPLC Purity Chromatograms of Compounds 53-76 and 78

RP-HPLC chromatogram of 78 (220 nm)

RP-HPLC chromatogram of 78 (480 nm)

6. Investigation of the Chemical Stability of Compounds 56, 58-61, 63 and 68

To determine the chemical stability, compounds **56**, **58-61**, **63** and **68** (100 μ M) were incubated in buffer (10 mM HEPES, 150 mM NaCl, 5 mM KCl, 2.5 mM CaCl₂ x H₂0, 1.2 mM KH₂PO₄, 1.2 mM Mg₂SO₄ x H₂O, 25 mM NaHCO₃, pH 7) at rt for 24 h. The solution was diluted (1:1) with 10% aq TFA and the stability monitored at 6 time intervals (0 h, 1 h, 2 h, 4 h, 8 h and 24 h) by analytical HPLC analysis (*Method A*, 220 nm).

RP-HPLC chromatogram of 56

RP-HPLC chromatogram of 58

RP-HPLC chromatogram of 63

RP-HPLC chromatogram of 68

7. References

- 1. M. Keller, S. Weiss, C. Hutzler, K. K. Kuhn, C. Mollereau, S. Dukorn, L. Schindler, G. Bernhardt, B. Konig and A. Buschauer, *J. Med. Chem.*, 2015, **58**, 8834-8849.
- Z. Yang, S. Han, M. Keller, A. Kaiser, B. J. Bender, M. Bosse, K. Burkert, L. M. Kogler, D. Wifling, G. Bernhardt, N. Plank, T. Littmann, P. Schmidt, C. Yi, B. Li, S. Ye, R. Zhang, B. Xu, D. Larhammar, R. C. Stevens, D. Huster, J. Meiler, Q. Zhao, A. G. Beck-Sickinger, A. Buschauer and B. Wu, *Nature*, 2018, 556, 520-524.
- 3. A. A. Bastian, A. Marcozzi and A. Herrmann, Nat. Chem., 2012, 4, 789.
- 4. E. Grochowski and J. Jurczak, *Synthesis*, 1977, **1977**, 277-279.
- 5. S. Laurent, F. Botteman, L. V. Elst and R. N. Muller, *Helv. Chim. Acta*, 2004, 87, 1077-1089.
- 6. G. A. Andrade, A. J. Pistner, G. P. A. Yap, D. A. Lutterman and J. Rosenthal, ACS Catal., 2013, 3, 1685-1692.
- 7. K. Stembera, A. Buchynskyy, S. Vogel, D. Knoll, A. A. Osman, J. A. Ayala and P. Welzel, ChemBioChem, 2002, 3, 332-340.
- 8. M. Keller, N. Pop, C. Hutzler, A. G. Beck-Sickinger, G. Bernhardt and A. Buschauer, J. Med. Chem., 2008, 51, 8168-8172.
- 9. W02014/053968A1, 2014.
- L. Wang, V. S. Guillen, N. Sharma, K. Flessa, J. Min, K. E. Carlson, W. Toy, S. Braqi, B. S. Katzenellenbogen, J. A. Katzenellenbogen, S. Chandarlapaty and A. Sharma, ACS Med. Chem. Lett., 2018, 9, 803-808.
- 11. M. Kim and K.-J. Han, Synth. Commun., 2009, 39, 4467-4472.
- 12. J. K. Kerkovius and F. Menard, *Synthesis*, 2016, **48**, 1622-1629.
- 13. N. Pluym, P. Baumeister, M. Keller, G. Bernhardt and A. Buschauer, ChemMedChem, 2013, 8, 587-593.
- 14. K. Kuhn, PhD thesis, University of Regensburg, 2017.