Supplementary Information

Argininamide-Type Neuropeptide $\mathbf{Y} \mathrm{Y}_{1}$ Receptor Antagonists: The Nature of N^{ω}-Carbamoyl Substituents Determines Y_{1} R Binding Mode and Affinity

Jonas Buschmann, Theresa Seiler, Günther Bernhardt, Max Keller, and David Wifling*
Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany

Table of Contents

1. Figures S1-S2 S2
2. Table S1 S4
3. Synthesis Protocols and Analytical Data of Compounds 23-34, 38-39, 41-42, 53-76 and 78 S4
4. ${ }^{1} \mathrm{H}$-NMR und ${ }^{13} \mathrm{C}$-NMR Spectra of Compounds 53-76 S15
5. RP-HPLC Purity Chromatograms of Compounds 53-76 and 78 S39
6. Investigation of the Chemical Stability of Compounds 56, 58-61,63 and 68 S43
7. References S45

1. Figures S1-S2

Figure S1. (A, C) Displacement curves of $\left[{ }^{3} \mathrm{H}\right] \mathbf{2}(\mathrm{c}=0.15 \mathrm{nM})$ obtained from competition binding studies with 68-72 (A), 73-76, 78 (C) and reference compound $\mathbf{2}$ at $\mathrm{Y}_{1} \mathrm{R}$-expressing SK-N-MC cells. (B, D) Concentration dependent inhibition curves obtained from the Fura-2 Ca^{2+} assay at intact HEL cells. The intracellular Ca^{2+} mobilization was induced by 10 nM pNPY after preincubation of the cells with 68-72 (B), 73-76 (D), respectively, for 15 min or the reference compound $\mathbf{2}$ for 20 min . (A-D) Data of compound $\mathbf{2}$ were taken from Keller et. al. ${ }^{1}$

 (C) showing superimposed snap shots collected every 100 ns .

2. Table S1

Table S1 Slope factors (Hill slope) of compounds $53-76$ and 78 determined by equilibrium competition binding with [$\left.{ }^{3} \mathrm{H}\right] 2$ and in the Fura- $2 \mathrm{Ca}^{2+}$ assay, respectively.

compd.	slope \pm SEM $^{\text {a }}$ (competition binding)	slope \pm SEM $^{\text {b }}$ (Fura-2 Ca^{2+})	compd.	slope \pm SEM $^{\text {a }}$ (competition binding)	slope \pm SEM $^{\text {b }}$ (Fura-2 Ca^{2+})
53	-1.05 ± 0.07	n.d.	66	-1.17 ± 0.08	-1.17 ± 0.11
54	-1.06 ± 0.03	n.d.	67	-0.97 ± 0.05	-1.30 ± 0.21
55	-0.97 ± 0.10	n.d.	68	-1.02 ± 0.09	-0.96 ± 0.07
56	-1.27 ± 0.10	$-2.36 \pm 0.09^{* *}$	69	-1.00 ± 0.07	-1.07 ± 0.24
57	$-1.25 \pm 0.06 *$	$-1.92 \pm 0.09^{* *}$	70	-1.03 ± 0.14	-1.13 ± 0.30
58	-1.08 ± 0.08	$-2.17 \pm 0.15^{* *}$	71	-1.00 ± 0.04	-1.02 ± 0.05
59	$-1.17 \pm 0.03^{*}$	$-1.74 \pm 0.22 *$	72	-0.98 ± 0.07	-1.19 ± 0.12
60	-1.03 ± 0.09	-1.79 ± 0.29	73	-0.91 ± 0.16	-0.99 ± 0.07
61	-1.02 ± 0.01	-0.79 ± 0.07	74	$-0.90 \pm 0.03 *$	$-0.83 \pm 0.01^{* *}$
62	-1.01 ± 0.08	-1.39 ± 0.21	75	-0.89 ± 0.06	-0.86 ± 0.12
63	-1.10 ± 0.18	-1.27 ± 0.16	76	-0.82 ± 0.08	-1.00 ± 0.11
64	-0.89 ± 0.05	$-0.69 \pm 0.07 *$	78	$-1.17 \pm 0.03 *$	n.d.
65	-0.81 ± 0.07	-0.83 ± 0.04			

${ }^{\text {a }}$ Slope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of radioligand competition binding data. Mean values \pm SEM from at least three independent experiments performed in triplicate. ${ }^{\text {b }}$ Slope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of the Fura- $2 \mathrm{Ca}^{2+}$ data. Mean values \pm SEM from at least three independent experiments performed in singlet. *Slope significantly different from unity, $P \leq 0.05$ (one sample, two-tailed t-test). ${ }^{* *}$ Slope significantly different from unity, $P \leq 0.01$ (one sample, two-tailed t-test). n.d.: not determined.

3. Synthesis Protocols and Analytical Data of Compounds 23-34, 38-39, 41-42, 53-76 and 78

Succinimidyl 2-methylpropionate (23). ${ }^{3}$ A solution of DCC ($0.89 \mathrm{~g}, 4.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and of 2methylpropionic acid (10) ($369 \mu \mathrm{~L}, 3.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were dropped to an ice-cold solution of 22 ($0.46 \mathrm{~g}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 23 ($0.22 \mathrm{~g}, 1.19 \mathrm{mmol}, 30 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 1.32(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.82(\mathrm{~s}, 4 \mathrm{H}$, interfering with the next signal), 2.88 (septet, $1 \mathrm{H}, \mathrm{J} 7.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 18.9,25.7,31.8,169.4,172.2$. HRMS (APCI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{4}\right]+186.0766$, found 186.0765. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$ (185.18).

Succinimidyl 2,2-dimethylpropionate (24). ${ }^{4}$ A solution of DCC (1.13 g , 5.48 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and of 2,2-dimethylpropionic acid (11) $(0.50 \mathrm{~g}, 4.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were dropped to an ice-cold solution of $22(0.46 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded $24(0.28 \mathrm{~g}, 1.41 \mathrm{mmol}, 35 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 1.37(\mathrm{~s}, 9 \mathrm{H}), 2.78-2.84(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.7$, 27.1, 38.5, 169.3, 173.5. HRMS (APCI): m/z [M+H]+ calc. for [$\left.\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}\right]^{+}$200.0923, found 200.0918. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ (199.21).

Succinimidyl N-Boc-glycinate (25). ${ }^{5}$ DCC ($0.61 \mathrm{~g}, 2.97 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dropped to an ice-cold solution of $22(0.34 \mathrm{~g}, 2.97 \mathrm{mmol})$ and N -Boc-glycinate (12) ($0.40 \mathrm{~g}, 2.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h . Afterwards, the reaction mixture was filtered and the solid washed (3 x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \mathrm{x} 75 \mathrm{~mL}$), and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporation at reduced pressure and $25(0.53 \mathrm{~g}$,
1.95 mmol, 86%) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta(\mathrm{ppm}) 1.39(\mathrm{~s}, 9 \mathrm{H}), 2.81(\mathrm{~s}$, $4 \mathrm{H}), 4.09(\mathrm{~d}, J 6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J 6.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 25.4,28.1,39.8,78.8$, 155.6, 166.9, 170.0. HRMS (APCI): m/z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}\right]^{+}$290.1352, found 290.1350. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ (272.26).

Succinimidyl benzoate (26). ${ }^{6}$ DCC ($1.10 \mathrm{~g}, 5.33 \mathrm{mmol}$) was dissolved in THF (10 mL) and dropped to an ice-cold solution of $22(0.82 \mathrm{~g}, 3.13 \mathrm{mmol})$ and benzoic acid (13) ($0.50 \mathrm{~g}, 4.09 \mathrm{mmol})$ in THF (30 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered, the solid washed (2 x) with THF (5 mL) and the organic solvent dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated at reduced pressure. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3$) to obtain $26\left(0.59 \mathrm{~g}, 2.69 \mathrm{mmol}, 86 \%\right.$) as white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): δ (ppm) $2.90(\mathrm{~s}, 4 \mathrm{H}), 7.62-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6): δ (ppm) 25.4, 124.4, 129.45, 129.88, 135.5, 161.7, 170.2. HRMS (APCI): m/z [M+H]+ calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{4}\right]^{+}$ 220.0610, found 220.0608. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{4}$ (219.20).

Succinimidyl phenylacetate (27). ${ }^{7}$ A solution of DCC ($0.84 \mathrm{~g}, 4.07 \mathrm{mmol}$) in DMF (1 mL) and of 2-phenylacetic acid (14) ($0.50 \mathrm{~g}, 3.67 \mathrm{mmol}$) in DMF (1 mL) were dropped to an ice-cold solution of 22 (0.36 g 7.12 mmol) in DMF (4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (5x) with DMF (1 mL). The organic phase was poured in saturated NaHCO_{3} solution (75 mL), and the aqueous phase extracted with ethyl acetate (3x 75 mL). The combined organic phases were washed (2 x) with water, dried over MgSO_{4}, and evaporated under reduced pressure. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 2$) to obtain $27(0.61 \mathrm{~g}, 2.62 \mathrm{mmol}, 84 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) $2.81(\mathrm{~s}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.7,37.7,127.9,129.0$, 129.4, 131.5, 166.9, 169.1. HRMS (APCI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}\right]+234.0766$, found 234.0765. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}$ (233.22).
Succinimidyl diphenylacetate (28). ${ }^{8}$ DCC ($1.08 \mathrm{~g}, 5.23 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and dropped to an ice-cold solution of $22(0.36 \mathrm{~g}, 3.1 \mathrm{mmol})$ and diphenylacetic acid (15) ($0.20 \mathrm{~g}, 0.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h . Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of NaHCO_{3} ($3 \times 100 \mathrm{~mL}$) and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated at reduced pressure and the crude product was purified by column chromatography (eluent light petroleum/ethyl acetate $2: 1$ to 1:1) to obtain $28(0.50 \mathrm{~g}, 1.62 \mathrm{mmol}, 72 \%)$ as a white sodlid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 2.66(\mathrm{~s}, 4 \mathrm{H}), 5.25$ (s, 1H), 7.18-7.31 (m, 10H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 25.7,54.1,128.00,128.79,128.96,136.8$, 168.2, 169.0. HRMS (APCI): m/z $[\mathrm{M}+\mathrm{N}]^{+}$calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}\right]^{+} 310.1079$, found 310.1075. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$ (309.32).

Succinimidyl cyclopropanecarboxylat (29). ${ }^{9}$ A solution of DCC ($0.93 \mathrm{~g}, 4.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and of cyclopropane carboxylic acid (16) $(324 \mu \mathrm{~L}, 4.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were dropped to an ice-cold solution of $22(0.48 \mathrm{~g}, 4.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF $(0.4 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 29 ($0.33 \mathrm{~g}, 1.80 \mathrm{mmol}, 43 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 1.05-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.81-194(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 10.3,10.6,25.6,169.4,170.3$. HRMS (APCI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{4}\right]^{+}$ 184.0610, found 184.0606. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$ (183.16).

Succinimidyl cyclobutanecorboxylat (30). ${ }^{10}$ A solution of DCC ($0.81 \mathrm{~g}, 3.93 \mathrm{mmol}$) in ethyl acetate (1 mL) and of cyclobutanecarboxylic acid (17) (335 $\mu \mathrm{L}, 3.50 \mathrm{mmol})$ in ethyl acetate $(1 \mathrm{~mL})$ were dropped to an icecold solution of $22(0.35 \mathrm{~g}, 3.04 \mathrm{mmol})$ in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 30 ($0.22 \mathrm{~g}, 1.11 \mathrm{mmol}, 37 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 1.93-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.78-2.89(\mathrm{~m}, 4 \mathrm{H})$,
3.37-3.51 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 18.9,25.5,25.8,35.2,169.5,170.7$. HRMS (APCI): m/z $[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{4}\right]+198.0766$, found 198.0764. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}$ (197.19).

Succinimidyl cyclopentanecarboxylat (31). A solution of DCC ($0.70 \mathrm{~g}, 3.39 \mathrm{mmol}$) in ethyl acetate (1 mL) and of cyclopentanecarboxylic acid (18) ($333 \mu \mathrm{~L}, 3.07 \mathrm{mmol}$) in ethyl acetate (1 mL) were dropped to an icecold solution of $22(0.35 \mathrm{~g}, 3.04 \mathrm{mmol})$ in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 31 ($0.33 \mathrm{~g}, 1.56 \mathrm{mmol}, 51 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.58-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.89-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 4 \mathrm{H})$, 2.97-3.11 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.7,26.0,30.3,40.7,169.5,172.0$. HRMS (APCI): m/z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. for $\left[\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$229.1188, found 229.1187. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ (211.22).
Succinimidyl cyclohexanecarboxylat (32). ${ }^{10,11} \mathrm{~A}$ solution of DCC ($\left.0.77 \mathrm{~g}, 3.73 \mathrm{mmol}\right)$ in ethyl acetate (1 $\mathrm{mL})$ and of cyclohexanecarboxylic acid ($\mathbf{1 9) ~ (~} 0.36 \mathrm{~g}, 2.81 \mathrm{mmol}$) in ethyl acetate (1 mL) were dropped to an ice-cold solution of $22(0.41 \mathrm{~g}, 3.56 \mathrm{mmol})$ in ethyl acetate (6 ml) and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3 x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded $32(0.40 \mathrm{~g}, 1.67 \mathrm{mmol}$, 59%) as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.19-1.62 (m, 7H), 1.64-1.75 (m, 2H), 1.86-1.96 (m, 2H), $2.80(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.3,25.0,25.5,28.4,39.4,170.3,170.9$. HRMS (APCI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 243.1345$, found 243.1346. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$ (225.24).
Succinimidyl cyclohexylacetate (33). A solution of DCC ($0.58 \mathrm{~g}, 2.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and of cyclohexylacetic acid ($\mathbf{2 0}$) ($0.36 \mathrm{~g}, 2.53 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were dropped to an ice-cold solution of $22(0.29$ $\mathrm{g}, 2.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. Afterwards, the reaction mixture was filtered and the solid washed (3 x) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 33 ($0.25 \mathrm{~g}, 1.04 \mathrm{mmol}, 41 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 0.99-1.33(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.92(\mathrm{~m}, 6 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J} 6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.8,26.1,26.2,33.0,35.1,38.8,168.1,169.5$. HRMS (APCI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\right]+257.1501$, found 257.1506. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ (239.27).
Succinimidyl trifluoroacetate (34). ${ }^{12} \mathbf{2 2}$ ($0.35 \mathrm{~g}, 3.04 \mathrm{mmol}$) was dissolved in THF (6 mL), trifluoroacetic acid anhydride ($\mathbf{2 1}$) ($0.90 \mathrm{~mL}, 6.38 \mathrm{mmol}$) was added dropwise and the solution stirred at rt for 3 h . After evaporation of the solvent, toluene (3 mL) was added and evaporated (3 x) to obtain $34(0.64 \mathrm{~g}, 3.04 \mathrm{mmol}$, 100%) as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 2.59(\mathrm{~s}, 4 \mathrm{H}) . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{NO}_{4}$ (211.10).
\mathbf{N}-tert-Butoxycarbonyl- \mathbf{N}^{\prime}-[2(tert-butoxycarbonylamino)ethyl]aminocarbonyl-S-methylisothiourea (38). ${ }^{1,13}$ A solution of tert-butyl (2-aminoethyl) carbamate (36) ($0.62 \mathrm{~g}, 3.87 \mathrm{mmol}$) and DIPEA (1.91 mL , $11.2 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added dropwise to an ice-cold solution of triphosgene (0.57 g , 1.92 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred at rt for $30 \mathrm{~min}, \mathrm{~N}$-Boc-S-methylisothiourea (35) ($0.79 \mathrm{~g}, 4.93 \mathrm{mmol}$) was added, and after 1.5 h , the solvent was removed by evaporation at reduced pressure. The crude product was purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate 98:2 to 90:10) to obtain $38(1.03 \mathrm{~g}, 2.74 \mathrm{mmol}, 71 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ (ppm) $1.37(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.11(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.32(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 13.5,27.5,28.1,39.5,39.8,77.6,82.1,150.1,155.6,161.5,164.8$. HRMS (ESI): m/z [M+H]+ calc. for [$\left.\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right]+377.1859$, found 377.1866. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (376.47).
N-tert-Butoxycarbonyl- \mathbf{N}^{\prime}-[3(tert-butoxycarbonylamino)propyl]aminocarbonyl-S-methylisothiourea (39). ${ }^{13}$ A solution of tert-butyl (3-aminopropyl)carbamate (37) ($5.00 \mathrm{~g}, 28.7 \mathrm{mmol}$) and DIPEA (14.7 mL , $86.1 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise to an ice-cold solution of triphosgene (4.26 g , 14.4 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. The reaction mixture was stirred at rt for $30 \mathrm{~min}, \mathrm{~N}$-Boc-S-methylisothiourea (35) ($6.55 \mathrm{~g}, 34.4 \mathrm{mmol}$) was added, and after 2 h , the solvent was removed by evaporation at
reduced pressure. The crude product was purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate 98:2 to 96:4; eluent light petroleum/ethyl acetate $87: 13$ to $82: 18$) to obtain $39(5.56 \mathrm{~g}, 14.2 \mathrm{mmol}, 50 \%)$ as a yellowish oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.87-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}, J 6.8 \mathrm{~Hz}, 1 \mathrm{H})$), $7.73(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 12.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 13.6,27.6,28.2,29.5,37.1,37.7,77.4,82.1,150.2,155.6,161.9,164.8$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SNa}\right]^{+} 413.1835$, found 413.1832. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (390.50).
(R)-N ${ }^{\alpha}$-Diphenylacetyl- N^{ω}-(aminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hydrotrifluoroacetate) (41). ${ }^{1} \quad$ (R)- N^{\prime}-(4-tert-Butoxybenzyl)- N^{α}-(2,2-diphenylacetyl)ornithinamide (40) ($1.31 \mathrm{~g}, 3.49 \mathrm{mmol}$) and N -tert-butoxycarbonyl- N^{\prime}-[2(tert-butoxycarbonylamino) ethyl]aminocarbonyl-Smethylisothiourea (38) ($1.50 \mathrm{~g}, 3.08 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}) . \mathrm{HgCl}_{2}(1.26 \mathrm{~g}, 4.62 \mathrm{mmol})$ and DIPEA ($1.31 \mathrm{~mL}, 7.70 \mathrm{mmol}$) were added and the mixture was stirred at rt for 1 h to afford the crude product that was purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $1: 1$). The purified product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and TFA (7.5 mL) was added. After 1 h , the mixture was allowed to come to rt and stirred overnight. The solvent was evaporated, and the crude product purified by HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=16 \mathrm{~min}$) to obtain 41 ($372.11 \mathrm{mg}, 47$ mmol, 68\%) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d d_{6} : $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 2.93 (br s, 2H), 3.18-3.26 (m, 2H), 3.33-3.38 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1 H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.69(\mathrm{~m}, 2 \mathrm{H})$, 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), $7.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.89 (br s, 3 H), $8.36(\mathrm{t}, J 5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.42-8.65 (br s, 2H, interfering with the next signal), 8.49 (d, J 8.1 Hz , 1H), 9.05 (br s, 1H), $9.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,37.2$, $38.5,40.4,41.6,52.3,55.9,115.0,117.0(q, J 297.1 \mathrm{~Hz}$) (TFA), 126.57, 126.61, 128.17, 128.21, 128.40, 128.50, $128.52,129.13,140.3,140.5,153.7,154.4,156.3,158.9$ ($q, J 31.6 \mathrm{~Hz}$) (TFA), 170.97, 171.04. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+} 560.2985$, found $560.2986 . \mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{4} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(559.67+228.05)$.
(R)- ${ }^{\alpha} \alpha^{-D i p h e n y l a c e t y l-N ~}{ }^{\omega}$-(aminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hydrotrifluoroacetate) (42). ${ }^{14}$ (R)- N^{\prime}-(4-tert-Butoxybenzyl)- N^{α}-(2,2-diphenylacetyl)ornithinamide (40) ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$) and N -tert-butoxycarbonyl- N^{\prime}-[3(tert-butoxycarbonylamino) propyl]aminocarbonyl-Smethylisothiourea ($\mathbf{3 9 \text {) (} 1 3 2 \mathrm { mg } \text { , } 0 . 3 4 \mathrm { mmol } \text {) were dissolved in } \mathrm { CH } _ { 2 } \mathrm { Cl } _ { 2 } (3 0 \mathrm { mL }) . \mathrm { HgCl } _ { 2 } (1 2 6 \mathrm { mg } , 0 . 4 6 \mathrm { mmol }) ~}$ and DIPEA ($100 \mathrm{mg}, 0.76 \mathrm{mmol}$) were added and the mixture was stirred at rt overnight to afford the crude product that was purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $10: 1$ to $1: 1$). The purified product was dissolved in a mixture (10.5 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA and water (1:1:0.1). Afterwards, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) was added, the organic solvent evaporated (2 x) at reduced pressure, and the crude product purified by HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{\mathrm{R}}=19 \mathrm{~min}$) to obtain 42 ($112 \mathrm{mg}, 0.14 \mathrm{mmol}, 45 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d $_{6}$): $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.50-1.60 (m, 1H), 1.63-1.79 (m, 3H), 2.77$2.88(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.26(\mathrm{~m}, 4 \mathrm{H}), 4.10-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.98-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.67(\mathrm{brs}, 1 \mathrm{H}), 7.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.37(\mathrm{t}, J 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41-$ $8.61(\mathrm{~m}, 3 \mathrm{H}), 9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 24.6$, $27.3,29.4,36.5,36.7,40.4,41.7,52.4,56.0,115.0,117.0(q, J 298.4 \mathrm{~Hz}$) (TFA), 126.59, 126.62, 128.18, 128.22 , $128,4,128.52,128.57,129.2,140.3,140.5,153.8,154.1,156.3,159.2$ (q, J 32.1 Hz) (TFA), 171.04, 171.08. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+} 574.3142$, found 574.3142. $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{4} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(573.70+$ 228.05).
(R)- ${ }^{\alpha}$-Diphenylacetyl- N^{ω}-(acetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (53). Compound 53 was prepared using General Procedure A, the reactants 41 (34.6 $\mathrm{mg}, 43.9 \mu \mathrm{~mol}$), succinimidyl acetate (43) ($7.3 \mathrm{mg}, 32.5 \mu \mathrm{~mol}$), DIPEA ($29 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) and the solvent DMF ($300 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-45: 55, t_{\mathrm{R}}=20 \mathrm{~min}$) afforded 53 $(22.4 \mathrm{mg}, 31.3 \mu \mathrm{~mol}, 71 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.51-1.61 (m, 1H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.10-3.27 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.90-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.25 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO-d d_{6} : $\delta(\mathrm{ppm}) 22.6$, 24.6, 29.4, 38.1, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.57, 126.61, 128.17, 128.21 , 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.9 (q, J 33.2 Hz) (TFA), 169.6, 170.99,
171.03. RP-HPLC (Method A, 220 nm): 100\% ($t_{\mathrm{R}}=11.8 \mathrm{~min}, k=3.5$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for [$\left.\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 602.3085$, found 602.3092. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(601.71+114.02)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(acetylylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (54). Compound 54 was prepared using General Procedure A, the reactants 42 (26.3 $\mathrm{mg}, 32.8 \mu \mathrm{~mol}$), succinimidyl acetate (43) ($5.1 \mathrm{mg}, 32 \mu \mathrm{~mol}$), DIPEA ($22 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}$) and the solvent DMF $\left(300 \mu \mathrm{~L}\right.$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-45: 55, t_{\mathrm{R}}=20 \mathrm{~min}$) afforded 54 ($15.7 \mathrm{mg}, 18.6 \mu \mathrm{~mol}, 57 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.52-1.60 (m, 3H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.03-3.08 (m, 2H), 3.08-3.13 (m, 2H), 3.16-3.24 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), $7.49(\mathrm{t}, J 5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.16(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.6,24.6,29.2,29.4,36.0,37.0,40.3,41.6,52.3,55.9,115.0,115.4$ (TFA), 117.4 (TFA), 126.57, 126.60, 128.17, 128.20, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.7, 156.3, 158.7 (q, J 34.0 Hz) (TFA), 169.3, 170.99, 171.03. RP-HPLC (Method A, 220 nm): 100\% ($t_{\mathrm{R}}=11.9 \mathrm{~min}, k=$ 3.6). HRMS (ESI): m/z [M+H]+ calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 616.3242$;found 616.3250. $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ ($615.74+114.02$).
(R)- N^{α}-Diphenylacetyl- N^{ω}-(propionylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (55). Compound 55 was prepared using General Procedure A, the reactants 42 (26.3 mg , $32.8 \mu \mathrm{~mol}$), succinimidyl propionate (44) ($6.1 \mathrm{mg}, 35.6 \mu \mathrm{~mol}$), DIPEA ($22 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}$) and the solvent DMF ($300 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 10-45: 55, t_{\mathrm{R}}=22 \mathrm{~min}$) afforded 55 ($17.5 \mathrm{mg}, 23.5 \mu \mathrm{~mol}, 72 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 0.99(\mathrm{t}, 3 \mathrm{H}, J 7.6$ Hz), 1.36-1.50 (m, 2H), 1.50-1.60 (m, 3H), 1.64-1.72 (m, 1H), 2.07 (q, J 7.6 Hz, 2H), 3.04-3.13 (m, 4H), 3.16$3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.95 (br s, 1H), 9.31 (br s, 1H, interfering with previous signal), 10.21 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 10.0,24.6, ~ 28.5,29.28,29.42$, 35.9, 37.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.5 (TFA), 117.5 (TFA), 126.57, 126.60, 128.16, 128.20, 128.42 , 128.50, 128.53, 129.1, 140.3, 140.5, 153.63, 153.71, 156.3, 158.8 (q, J 33.6 Hz) (TFA), 170.99, 171.03, 170.07. RP-HPLC (Method A, 220 nm): 99\% ($t_{\mathrm{R}}=12.4 \mathrm{~min}, k=3.8$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 630.3398 , found 630.3403. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(629.76+114.02)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(2-fluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (56). Compound 56 was prepared using General Procedure C and the reactants 41 ($99.71 \mathrm{mg}, 126.6 \mu \mathrm{~mol}$), 2-fluoroacetic acid (46) ($28.99 \mathrm{mg}, 371.5 \mu \mathrm{~mol}$), DIPEA ($55 \mu \mathrm{~L}, 315.7 \mu \mathrm{~mol}$), DCC ($39.44 \mathrm{mg}, 191.2 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=21 \mathrm{~min}$) afforded 56 ($26.6 \mathrm{mg}, 36.3 \mu \mathrm{~mol}, 29 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.71(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 6 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H})$, $4.78(\mathrm{~d}, J 47.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}$, $8 \mathrm{H}), 7.56(\mathrm{brs}, 1 \mathrm{H}), 8.26(\mathrm{t}, J 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.48 (d, $J 8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (br s, 1 H), $9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.36$ (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,37.8,38.8,40.4,41.6,52.3,55.9,80.0$ (d, J 180.4 Hz), 115.0, 116.0 (TFA), 118.0 (TFA), $126.58,126.62,128.17,128.22,128.43,128.51,128.54,129.1,140.3,140.5,153.7,154.0,156.3,159.0(q, J$ 32.2 Hz) (TFA), 167.5 (d, $J 18.2 \mathrm{~Hz}$), 171.01, 171.05. RP-HPLC (Method A, 220 nm): 98\% ($t_{\mathrm{R}}=12.6 \mathrm{~min}, k=$ 3.9). HRMS (ESI): m/z [M+H]+ calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{FN}_{7} \mathrm{O}_{5}\right]^{+} 620.2991$, found 620.2999. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{FN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ ($619.70+114.02$).
(R)- N^{α}-Diphenylacetyl- N^{ω}-(2,2-difluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (57). Compound 57 was prepared using General Procedure C and the reactants 41 ($66.4 \mathrm{mg}, 84.3 \mu \mathrm{~mol}$), 2,2-difluoroacetic acid (47) ($15 \mu \mathrm{~L}, 238.4 \mu \mathrm{~mol}$), DIPEA ($36 \mu \mathrm{~L}, 206.7$ $\mu \mathrm{mol})$, DCC ($26.3 \mathrm{mg}, 127.5 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{\mathrm{R}}=21 \mathrm{~min}$) afforded $57(10.0 \mathrm{mg}, 13.3 \mu \mathrm{~mol}, 16 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): δ (ppm) 1.35-1.48 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.70 (m, 1H), 3.17-3.27 (m, 6H), 4.08-4.19 (m, 2H), 4.30$4.35(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{t}, J 53.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.31 (m, 8H), $7.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35(\mathrm{t}, J 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding
signals), 8.48 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.86 (t, J $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.94 (br s, 1H), 9.30 (br s, 1H), 10.23 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,38.2,38.4,40.3,41.6,52.3,55.9,108.5(\mathrm{t}, \mathrm{J} 247.2 \mathrm{~Hz}$), 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, $156.3,158.6(\mathrm{q}, J 31.4 \mathrm{~Hz})(\mathrm{TFA}), 162.6(\mathrm{t}, J 25.1 \mathrm{~Hz}), 170.97,171.02$. RP-HPLC (Method A, 220 nm): $98 \%\left(t_{\mathrm{R}}\right.$ $=12.8 \mathrm{~min}, k=4.0$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 638.2902$, found 638.2905. $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(637.69+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(trifluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

 mide hydrotrifluoroacetate (58). Compound 58 was prepared using General Procedure A, the reactants 41 (30 mg , $38.1 \mu \mathrm{~mol}$), succinimidyl trifluoroacetate (34) ($20 \mathrm{mg}, 88.3 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=19$) afforded 58 ($6.24 \mathrm{mg}, 8.1 \mu \mathrm{~mol}, 21 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.32(\mathrm{~m}, 2 \mathrm{H})$, 4.08-4.21 (m, 2H), 4.30-4.37 (m, 1H), $5.12(\mathrm{~s}, 1 \mathrm{H}), ~ 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), ~ 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.27-7.30 (m, 8H), $7.61(\mathrm{t}, J 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.48 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.91 (br s, 1H), $9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.48(\mathrm{t}, J 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.17$ (br s s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,36.5,38.1,38.9,40.4,41.6,52.3,56.0,114.96$ (TFA), 115.03, 116.9 (TFA), 117.1 ($q, J 298.6 \mathrm{~Hz}$), 126.58, 126.61, 128.17, 128.21, 128.42, 128.51, 128.56, 129.1, 140.3, 140.5, 153.7, 154.2, 156.5, 156.8 (the last signals belong to a quartet that is not fully resolved), 158.8 (q, $J 31.7 \mathrm{~Hz}$) (TFA), 171.04, 171.07. RP-HPLC (Method A, 220 nm): $98 \%\left(t_{\mathrm{R}}=13.6 \mathrm{~min}, k=4.3\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{5}\right]+656.2803$, found 656.2814. $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(655.68+114.02)$.(R)-N ${ }^{\alpha}$-Diphenylacetyl- N^{ω}-(2-chloroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (59). Compound 59 was prepared using General Procedure B and the reactants 41 ($106.74 \mathrm{mg}, 135.5 \mu \mathrm{~mol}$), 2-chloroacetic acid (48) ($37.4 \mathrm{mg}, 395.8 \mu \mathrm{~mol}$), DCC ($38 \mathrm{mg}, 184.2 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=18 \mathrm{~min}$) afforded $59(16.61 \mathrm{mg}$, $22.14 \mu \mathrm{~mol}, 16 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.37-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.24(\mathrm{~m}, 6 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H})$, 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), $7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 1 \mathrm{H})$, $8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$), 9.31 (br s, 1H), 10.32 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,38.6,38.7,40.3$, 41.6, 42.6, 52.3, 55.9, 115.01, 115.9 (TFA), 117.9 (TFA), 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.53, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, J 32.5 Hz) (TFA), 166.3, 170.98, 171.03. RP-HPLC (Method A, 220 nm): $100 \%\left(t_{\mathrm{R}}=12.8 \mathrm{~min}, k=4.0\right)$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{ClN}_{7} \mathrm{O}_{5}\right]^{+}$ 636.2696, found 636.2699. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{ClN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ ($636.15+114.02$).
(R)- N^{α}-Diphenylacetyl- N^{ω}-(2-bromoacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (60). Compound 60 was prepared using General Procedure B and the reactants 41 ($93.44 \mathrm{mg}, 118.6 \mu \mathrm{~mol}$), 2-bromoacetic acid (49) ($37.5 \mathrm{mg}, 269.9 \mu \mathrm{~mol}$), DCC ($31.1 \mathrm{mg}, 150.7 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{\mathrm{R}}=19 \mathrm{~min}$) afforded $\mathbf{6 0}(15.40 \mathrm{mg}$, $19.4 \mu \mathrm{~mol}, 16 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.37-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.24(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H})$, $6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), ~ 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 1 \mathrm{H})$, $8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$), 9.31 (br s, 1H), 10.32 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): δ (ppm) 24.6, 29.40, 29.44, 38.66, 38.73, 40.4, 41.6 52.3, 55.9, 115.0, 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, J 32.9 Hz), 166.5, 170.97, 171.03. RP-HPLC (Method A, 220 nm): 99\% (t_{R} $=12.9 \mathrm{~min}, k=4.0$). HRMS (ESI): m/z [M+H]+ calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{7} \mathrm{O}_{5}\right]^{+} 680.2191$, found 680.2193. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BrN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(680.60+114.02)$.

(R)- ${ }^{\alpha}$-Diphenylacetyl- N^{ω}-(glycinylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide

 bis(hydrotrifluoroacetate) (61). Compound 61 was prepared using General Procedure A, the reactants 41 ($41.4 \mathrm{mg}, 52.6 \mu \mathrm{~mol}$), succinimidyl N -Boc-glycinate (25) ($17.6 \mathrm{mg}, 64.6 \mu \mathrm{~mol}$), DIPEA ($35 \mu \mathrm{~L}, 200.9 \mu \mathrm{~mol}$) and the solvent DMF (1 mL) Additionally, the crude product was poured into a solution of 100 mL water (5% acetonitrile, $0.5 \% \mathrm{TFA}$). After lyophilization, the crude product was dissolved in a mixture (2 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$and TFA (1:1) and stirred at rt for 2 h . The solvent was evaporated, and the crude product purified by preparative HPLC (gradient: 0-30 min, A/B 85:15-40:60, $t_{\mathrm{R}}=15 \mathrm{~min}$) which afforded $61(20.5 \mathrm{mg}, 24.4 \mu \mathrm{~mol}$, 46%) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H})$, 1.64-1.72 (m, 1H), 3.17-3.26 (m, 6H), 3.53 (s, 2H), 4.09-4.19 (m, 2H), 4.31-4.36 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-$ $6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.36(\mathrm{t}$, $J 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.56(\mathrm{~m}, 4 \mathrm{H}), 9.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$\left.d_{6}\right): \delta(\mathrm{ppm}) 24.6,29.4,38.3,38.7,40.0,40.3,41.6,52.3,55.9,115.0,116.1$ (TFA), 118.0 (TFA), 126.58, 126.61, $128.17,128.21,128.41,128.51,128.54,129.1,140.3,140.5,153.7,154.1,156.3,158.9$ (q, J 31.7 Hz (TFA), 166.2, 171.01, 171.06. RP-HPLC (Method A, 220 nm): $96 \%\left(t_{\mathrm{R}}=10.9 \mathrm{~min}, k=3.2\right.$). HRMS (ESI): m/z [M+H] ${ }^{+}$ calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{5}\right]^{+} 617.3194$, found 617.3205. $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{5} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(616.31+228.04)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(2-hydroxyacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (62). Under assay conditions, 60 is stable for 24 h . Degradation of compound 60 led to a $1: 1$ mixture of $\mathbf{6 0}$ and $\mathbf{6 2}$ after 6 months. Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{R}=15 \mathrm{~min}$) afforded 62 as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.35-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.25 (m, 6H), 3.81 ($\mathrm{s}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H})$, 4.31-4.36 (m, 1H), 5.12 (s, 1H), 5.50 (br s, 1H), 6.50-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26$7.30(\mathrm{~m}, 8 \mathrm{H}), 7.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.88(\mathrm{t}, J 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.48(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d d_{6} : $\delta(\mathrm{ppm}) 24.6,29.4,37.7,39.1,40.3,41.652 .3,55.9,61.4,115.0,126.57,126.61,128.16,128.20$, $128.41,128.49,128.50,129.1,140.3,140.4,153.5,153.8,156.3,158.3$ (q, J 31.6 Hz) (TFA), 170.95, 171.00, 172.3. RP-HPLC (Method A, 220 nm): $96 \%\left(t_{\mathrm{R}}=11.5 \mathrm{~min}, k=3.5\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for [$\left.\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{6}\right]^{+} 618.3035$, found 618.3038. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(617.71+114.02)$.
(R)- ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}{ }^{\omega}$-(acrylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (63). Compound 63 was prepared using General Procedure B and the reactants 41 ($97.33 \mathrm{mg}, 123.5 \mu \mathrm{~mol}$), acrylic acid (52) ($20 \mu \mathrm{~L}, 291.4 \mu \mathrm{~mol}$), DCC ($25 \mathrm{mg}, 121.2 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-40:60, $t_{\mathrm{R}}=18 \mathrm{~min}$) afforded $63(9.0 \mathrm{mg}, 12.4 \mu \mathrm{~mol}, 10 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.72$ (m, 1H), 3.18-3.23 (m, 4H), 3.23-3.27 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1H), 5.16 (s, 1H), 5.59 (dd, ${ }^{2} J$ $\left.2.1 \mathrm{~Hz},{ }^{3} \mathrm{~J} 10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08$ (dd, $\left.{ }^{2} J 2.1 \mathrm{~Hz},{ }^{3} \mathrm{~J} 17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.20\left(\mathrm{dd},{ }^{2} J 10.1 \mathrm{~Hz},{ }^{3} \mathrm{~J} 17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.65-6.70(\mathrm{~m}$, $2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{t}, J 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (t, J $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 9.31 (br s, 1H), 10.18 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,38.1,39.0,40.3,41.6,52.3$, $55.9,115.0,125.3,126.56,126.60,128.16,128.20,128.41,128.49,128.52,129.1,131.6,140.3,140.5,153.6$, 153.9, 156.3, 158.4 (q, J32.1 Hz) (TFA), 165.0, 170.97, 171.02. RP-HPLC (Method A, 220 nm): 98\% ($t_{\mathrm{R}}=12.4$ $\min , k=3.8$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 614.3085$, found 614.3089. $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(613.72+114.02)$.
(R)-N ${ }^{\alpha}$-Diphenylacetyl-N ω-(3-chloropropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (64). Compound 64 was prepared using General Procedure B and the reactants 41 ($101.15 \mathrm{mg}, 128.4 \mu \mathrm{~mol}$), 3-chloropropionic acid (50) ($20.31 \mathrm{mg}, 187.2 \mu \mathrm{~mol}$), DCC (33.02 mg , $160 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=21 \mathrm{~min}$) afforded 64 ($9.16 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 9 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}$), 1.51-1.59 (m, 1H), 1.64-1.72 (m, 1H), $2.56(t, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.23(\mathrm{~m}, 6 \mathrm{H}), 3.77(\mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.20$ $(\mathrm{m}, 2 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32$ $(\mathrm{m}, 8 \mathrm{H}), 7.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (br s, 1H), 9.32 (br s, 1H), 10.34 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,38.1,38.3,39.1,40.3,40.9,41.6,52.3,55.9,115.0,116.0$ (TFA), 118.0 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 ($q, J 31.6 \mathrm{~Hz}$) (TFA), 169.2, 170.98, 171.03. RP-HPLC (Method A, 220 nm): 96% ($t_{\mathrm{R}}=12.8 \mathrm{~min}, k=4.0$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{ClN}_{7} \mathrm{O}_{5}\right]^{+} 650.2852$, found 650.2854. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{ClN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(650.18+114.02)$.
(R)-N ${ }^{\alpha}$-Diphenylacetyl-N ω-(3-bromopropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (65). Compound 65 was prepared using General Procedure B and the reactants 41 ($97.3 \mathrm{mg}, 123.5 \mu \mathrm{~mol}$), 3-bromopropionic acid (51) ($80 \mathrm{mg}, 522.9 \mu \mathrm{~mol}$), DCC ($30 \mathrm{mg}, 145.4$
$\mu \mathrm{mol}$). Purification by preparative HPLC (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=21 \mathrm{~min}$) afforded 65 ($12.0 \mathrm{mg}, 14.8 \mu \mathrm{~mol}, 12 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.35-1.49(\mathrm{~m}, 2 \mathrm{H})$, 1.49-1.57 (m, 1H), 1.63-1.71 (m, 1H), 2.67 (t, J 6.5 Hz, 2H), 3.14-3.22 (m, 6H), 3.63 (t, J 6.5 Hz, 2H), 4.09-4.20 $(\mathrm{m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31$ $(\mathrm{m}, 8 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.48(\mathrm{~d}, J 8.48 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.36,29.40,38.1,38.5,38.9,40.3,41.652 .3,55.9,115.0,126.57,126.60,128.16$, 128.20, 128.41, 128.49, 128.51, 129.1, 140.3, 140.5, 153.6, $153.8,156.3,158.6$ (q, J 33.4 Hz (TFA), 169.5, 170.96, 171.02. RP-HPLC (Method A, 220 nm): $97 \%\left(t_{\mathrm{R}}=13.0 \mathrm{~min}, k=4.1\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{BrN}_{7} \mathrm{O}_{5}\right]^{+} 694.2347$, found 694.2355. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{BrN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ (694.63+114.02).
(R)-N ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}{ }^{\omega}$-(2-methylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (66). Compound 66 was prepared using General Procedure A, the reactants 41 (30.98 mg , $39.3 \mu \mathrm{~mol}$), succinimidyl 2-methylpropionate (23) ($7.76 \mathrm{mg}, 41.9 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}$, $114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{\mathrm{R}}=17 \mathrm{~min}$) afforded $66(24.54 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 84 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 0.99(\mathrm{~d}, J 6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 1 \mathrm{H}), 2.32$ (septet, $J 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.18(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-$ $6.70(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 1 \mathrm{H}), 8.36$ ($\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (br s, 1 H), 9.31 (br s, 1H), $10.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d d_{6}): $\delta(\mathrm{ppm}) 19.5,24.6,29.4,34.1,38.0,39.1$, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.7 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, $128.52,129.13,140.3,140.5,153.6,153.9,156.3,158.8$ (q, J 33.1 Hz) (TFA), 170.97, 171.03, 173.0. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=15.8 \mathrm{~min}, k=4.5\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 630.3398$, found 630.3410. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(629.76+114.02)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(2,2-dimethylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (67). Compound 67 was prepared using General Procedure A, the reactants 41 ($31.06 \mathrm{mg}, 39.4 \mu \mathrm{~mol}$), succinimidyl 2,2-dimethylpropionate (24) ($14.09 \mathrm{mg}, 70.7 \mu \mathrm{~mol}$), DIPEA (20 $\mu \mathrm{L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 90:10-30:70, $t_{\mathrm{R}}=19 \mathrm{~min}$) afforded $67(26.60 \mathrm{mg}, 35.1 \mu \mathrm{~mol}, 89 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d d_{6}): $\delta(\mathrm{ppm}) 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.23(\mathrm{~m}, 6 \mathrm{H})$, 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.32 (m, 8H), 7.47 (br s, 1H), 7.52-7.57 (m, 1H), $8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (br s, 2H, interfering with two surrounding signals), 8.49 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 ($\mathrm{s}, 1 \mathrm{H}$), 9.31 (br s, 1H), 10.38 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d d_{6}): $\delta(\mathrm{ppm}) 24.6,27.4,29.4,38.0,38.5,39.01,40.3,41.6,52.3,55.9,115.0,115.7$ (TFA), 117.7 (TFA), $126.57,126.60,128.16,128.20,128.41,128.50,128.53,129.13,140.3,140.5,153.7,154.0,156.3,158.9(q, J$ 32.8 Hz) (TFA), $170.98,171.03,177.9$. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=17.5 \mathrm{~min}, k=5.1\right)$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 644.3555$, found $644.3570 . \mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(643.79+$ 114.02).
(R)-N ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}$-(cyclopropoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (68). Compound 68 was prepared using General Procedure A, the reactants 41 ($30.81 \mathrm{mg}, 39.1 \mu \mathrm{~mol}$), succinimidyl cyclopropanecarboxylat (29) ($11.13 \mathrm{mg}, 60.8 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}$, $114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}$, A/B $\left.85: 15-38: 62, t_{\mathrm{R}}=17 \mathrm{~min}\right)$ afforded $68(19.36 \mathrm{mg}, 26.1 \mu \mathrm{~mol}, 67 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d d_{6} : $\delta(\mathrm{ppm})$ 0.61-0.69 (m, 4H), 1.38-1.57 (m, 4H), 1.63-1.71 (m, 1H), 3.14-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.01 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8 H), $7.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$) , $8.97(\mathrm{~s}, 1 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO-d d_{6} : $\delta(\mathrm{ppm})$ $6.3,13.6,24.6,29.4,38.2,39.3,40.3,41.6,52.3,55.9,115.0,116.1$ (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, J 32.7 Hz) (TFA), 170.97, 171.02, 173.0. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=17.0 \mathrm{~min}, k=4.9\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 628.3244$, found 628.3255. $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(627.75+114.02)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(cyclobutoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (69). Compound 69 was prepared using General Procedure A, the reactants 41 (30.27 mg , $38.4 \mu \mathrm{~mol}$), succinimidyl cyclobutanecorboxylat ($\mathbf{3 0}$) (11.46 mg , $63.1 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8$ $\mu \mathrm{mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:1538:62, $t_{\mathrm{R}}=18 \mathrm{~min}$) afforded $69(20.90 \mathrm{mg}, 27.7 \mu \mathrm{~mol}, 72 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO$\left.d_{6}\right): \delta(\mathrm{ppm}) 1.35-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 2 \mathrm{H})$, 2.07-2.15 (m, 2H), 2.96 (q, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.17(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36$ (m, 1H), 1.53 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.51 (br s, 1 H), $7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (br s, 2 H , interfering with two surrounding signals), 8.49 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.96 (br s, 1H), 9.31 (br s, 1H), $10.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 17.7$, 24.7, 29.4, 36.5, 38.1, 38.7, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.6 (TFA), 117.6 (TFA), 126.56, 126.60 , $128.16,128.20,128.41,128.49,128.52,129.13,140.3,140.5,153.6,153.9,156.3,158.7$ (q, J 33.6 Hz (TFA), 170.97, 171.02, 174.3. RP-HPLC (Method B, 220 nm): $96 \%\left(t_{\mathrm{R}}=16.4 \mathrm{~min}, k=4.7\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calc. for $\left[\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 642.3398$, found 642.3406. $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(641.77+114.02)$.
(R)-N ${ }^{\alpha}$-Diphenylacetyl- N^{ω}-(cyclopentoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (70). Compound $\mathbf{7 0}$ was prepared using General Procedure A, the reactants 41 ($30.82 \mathrm{mg}, 39.1 \mu \mathrm{~mol}$), succinimidyl cyclopentanecarboxylat (31) ($10.13 \mathrm{mg}, 48.0 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}$, $114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $\left.t_{\mathrm{R}}=19 \mathrm{~min}\right)$ afforded $70(15.90 \mathrm{mg}, 20.7 \mu \mathrm{~mol}, 53 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.35-1.64(\mathrm{~m}, 10 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 2 \mathrm{H})$, $4.31(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.50$ (br s, 1H), $7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, J8.1 Hz, 1H), $8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6$, 25.6, 29.4, 29.9, 38.1, 39.1, 40.3, 41.6, 44.3, 52.3, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.56, 126.60 , $128.15,128.20,128.41,128.49,128.52,129.13,140.3,140.5,153.6,153.9,156.3,158.6(q, J 33.2 \mathrm{~Hz})$ (TFA), 170.97, 171.02, 175.7. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=17.0 \mathrm{~min}, k=4.9\right)$. HRMS (ESI): m/z [M+H] ${ }^{+}$ calc. for $\left[\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 656.3555$, found 656.3571 . $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(655.80+114.02)$.
(R)- ${ }^{\alpha}$ - Diphenylacetyl- N^{ω}-(cyclohexoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (71). Compound 71 was prepared using General Procedure A, the reactants 41 (29.0 mg , $36.8 \mu \mathrm{~mol}$), succinimidyl cyclohexanecarboxylat (32) (11.3 mg , $54.0 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=$ 20.0 min) afforded $71(17.45 \mathrm{mg}, 22.3 \mu \mathrm{~mol}, 60.6 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): δ (ppm) 1.10-1.22 (m, 3H), 1.26-1.35 (m, 2H), 1.36-1.50 (m, 2H), 1.51-1.62 (m, 2H), 1.64-1.71 (m, 5H), 2.02$2.08(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.17(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-$ $6.69(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.47$ (br s, 1H), 7.75-7.80 (m, 1H), 8.36 $(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{br} \mathrm{s}$, 1H), 9.31 (br s, 1H), 10.25 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d d_{6}): $\delta(\mathrm{ppm}) 24.6,25.3,25.5,29.2,29.4,37.9$, $39.3,40.3,41.6,44.1,52.3,55.9,115.0,115.6$ (TFA), 117.6 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, $128.49,128.52,129.1,140.3,140.5,153.6,153.9,156.3,158.7(q, J 32.4 \mathrm{~Hz}$ (TFA), 170.97, 171.02, 175.6. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=18.0 \mathrm{~min}, k=5.2\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 670.3711 , found 670.3722. $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(669.83+114.02)$.
(R)- ${ }^{\alpha}{ }^{\alpha}$-Diphenylacetyl- N^{ω}-(cyclohexylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (72). Compound $\mathbf{7 2}$ was prepared using General Procedure A, the reactants 41 ($30.6 \mathrm{mg}, 38.8 \mu \mathrm{~mol}$), succinimidyl cyclohexylacetate (33) ($12.7 \mathrm{mg}, 56.9 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{\mathrm{R}}=$ 21 min) afforded 72 ($15.8 \mathrm{mg}, 19.8 \mu \mathrm{~mol}, 51 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 0.82-0.92 (m, 2H), 1.06-1.21 (m, 3H), 1.37-1.50 (m, 2H), 1.50-1.74 (m, 8H), $1.93(\mathrm{~d}, J 6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 2 \mathrm{H}), ~ 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), ~ 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.03(\mathrm{~m}$, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.48 (br s, 1H), 7.87 (br s, 1H), 8.36 (t, J $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, $J 8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.96 (br s, 1H), $9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,25.6,25.8,29.4,32.5,34.6,37.9,39.3,40.3,41.6,43.4,52.3,55.9$, $115.0,126.56,126.59,128.15,128.19,128.40,128.49,128.52,129.1,140.3,140.5,153.6,153.9,156.3,158.7$
($\mathrm{q}, \mathrm{J} 34.5 \mathrm{~Hz}$) (TFA), 170.96, 171.02, 171.7. RP-HPLC (Method B, 220 nm): $100 \%\left(t_{\mathrm{R}}=16.0 \mathrm{~min}, k=4.6\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 684.3868$, found 684.3887. $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ ($683.85+$ 114.02).
(R)- N^{α}-Diphenylacetyl- N^{ω}-(benzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (73). Compound 73 was prepared using General Procedure A, the reactants 41 (30.74 mg , $39.0 \mu \mathrm{~mol}$), succinimidyl benzoate ($\mathbf{2 6}$) (13 mg , $59.3 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-40: 60, t_{\mathrm{R}}=21 \mathrm{~min}$) afforded 73 ($12.0 \mathrm{mg}, 15.4 \mu \mathrm{~mol}, 39 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}$, $2 \mathrm{H})$, 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 2H), 3.28-3.33 (m, 2H), 3.34-3.42 (m, 2H, overlaid with water), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.03 (m, 2H), 7.19$7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.87(\mathrm{~m}, 2 \mathrm{H})$, $8.36(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56$ (t, $J 5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.96 (br s, 1H), 9.32 (br s, 1H), 10.24 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO-d ${ }^{2}$): $\delta(\mathrm{ppm}) 24.6$, $29.4,38.8,39.0,40.3,41.6,52.3,55.9,115.0,126.56,126.60,127.20,128.16,128.20,128.24,128.41,128.49$, 128.52, 129.1, 131.2, 134.4, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, J 31.5 Hz) (TFA), 166.6, 170.98, 171.03. RP-HPLC (Method A, 220 nm): $99 \%\left(t_{\mathrm{R}}=13.7 \mathrm{~min}, k=4.3\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for $\left[\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 664.3242$, found 664.3250. $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(663.78+114.02)$.
(R)- N^{α}-Diphenylacetyl- N^{ω}-(4-fluorobenzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (74). Compound 74 was prepared using General Procedure A, the reactants 41 ($30.95 \mathrm{mg}, 39.3 \mu \mathrm{~mol}$), succinimidyl 4-fluorobenzoate (45) ($10.21 \mathrm{mg}, 23.4 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 80: 20-50: 50, t_{\mathrm{R}}=$ 20 min) afforded $74(13.8 \mathrm{mg}, 17.3 \mu \mathrm{~mol}, 44 \%)$ as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.36-1.49 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.23 (m, 2H), 3.27-3.32 (m, 2H), 3.35-3.40 (m, $2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}$, 2 H), 7.26-7.30 (m, 10H), 7.30-7.31 (m, 1H), 7.64 (br s, 1H), 7.89-7.93 (m, 2H), $8.36(\mathrm{t}, J 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.60(\mathrm{t}, J 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.96$ (br s, 1H), 9.31 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,38.8,39.0,40.3,41.6,52.3,55.9,115.0$, 115.14 (d, J 21.7 Hz), 126.55, 126.59, 128.14, 128.19, 128.40, 128.48, 128.51, 129.1, 129.8 (d, J 9.0 Hz), 130.9 (d, J 3.0 Hz), 140.3, 140.4, 153.6, 153.9, 156.3, 158.4 (q, J 30.7 Hz (TFA), 163.8 (d, J 248.3 Hz), 165.5, 170.97, 171.01. RP-HPLC (Method C, 220 nm): $98 \%\left(t_{\mathrm{R}}=22.9 \mathrm{~min}, k=6.9\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calc. for [$\left.\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{FN}_{7} \mathrm{O}_{5}\right]^{+} 682.3148$, found 682.3157. $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{FN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(681.77+114.02$ 2).
(R)-N ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}$-(phenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (75). Compound 75 was prepared using General Procedure A, the reactants 41 ($30.18 \mathrm{mg}, 38.3 \mu \mathrm{~mol}$), succinimidyl phenylacetate (27) ($10.39 \mathrm{mg}, 44.6 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=$ 19 min) afforded 75 ($19.64 \mathrm{mg}, 24.8 \mu \mathrm{~mol}, 65 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ (ppm) 1.36-1.51 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.14-3.24 (m, 6H), 3.40 (s, 2H), 4.09-4.20 (m, $2 \mathrm{H}), 4.30-4.38(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.31(\mathrm{~m}, 15 \mathrm{H}), 7.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J 8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.95 (br s, 1H), 9.31 (br s, 1H), 10.27 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d d_{6} : $\delta(\mathrm{ppm}$) 24.6, 29.4, $38.2,39.1,40.3,41.6,42.4,52.3,55.9,115.0,115.8$ (TFA), 117.8 (TFA), 126.3, 126.57, 126.60, 128.16, 128.20 , 128.41, 128.50, 128.52, 128.99 (two carbon signals), 129.13, 136.3, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 ($\mathrm{q}, J 33.6 \mathrm{~Hz}$) (TFA), 170.5, 170.98, 171.03. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{\mathrm{R}}=17.0 \mathrm{~min}, k=4.9\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 678.3398$, found 678.3414. $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(677.81+$ 114.02).
(R)-N ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}$-(diphenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (76). Compound 76 was prepared using General Procedure A, the reactants 41 ($35.81 \mathrm{mg}, 45.5 \mu \mathrm{~mol}$), succinimidyl diphenylacetate (28) ($26 \mathrm{mg}, 84.1 \mu \mathrm{~mol}$), DIPEA ($25 \mu \mathrm{~L}, 143.5 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{\mathrm{R}}=$ 16 min) afforded 76 ($15 \mathrm{mg}, 17.3 \mu \mathrm{~mol}, 38 \%$) as a white fluffy solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.37-1.48 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.14-3.24 (m, 6H), 4.07-4.20 (m, 2H), 4.29-4.37 (m, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 16 \mathrm{H})$,
7.49 (br s, 1H), 8.34-8.38 (m, 2H), 8.42 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J 8.1 Hz , 1 H), 8.92 (br s, 1H), 9.30 (br s, 1H), 10.18 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.6,29.4,38.3$, 39.0, 40.4, 41.6, 52.3, 55.9, 56.6, 115.0, 116.1 (TFA), 118.1 (TFA), 126.55, 126.58 (two carbon signals), $128.14,128.17,128.18,128.27,128.34,128.39$ (2 carb.), 128.46, 128.47, 128.49, 129.11, 140.3 (2 carb.), $140.4,153.6,153.9,156.3,158.6(q, J 30.5 \mathrm{~Hz})$ (TFA), $170.95,171.01,171.37$. one aromatic carbon was not resolved. RP-HPLC (Method B, 220 nm): $98 \%\left(t_{\mathrm{R}}=19.6 \mathrm{~min}, k=5.8\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{5}\right]+754.3711$, found 754.3715. $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(753.90+114.02)$.
(R)-N ${ }^{\alpha}$-Diphenylacetyl- ${ }^{\omega}{ }^{\omega}$-(4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dienyl)-2,6-dime-thylpyridinioethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate trifluoroacetate (78). DIPEA ($2.80 \mu \mathrm{~L}, 16 \mu \mathrm{~mol}$) was added to a solution of compound $41(3.19 \mathrm{mg}, 4.04 \mu \mathrm{~mol})$ in DMF ($50 \mu \mathrm{~L}$). After 5 min , the fluorescent dye Py-5 (77) ($5.74 \mathrm{mg}, 15.6 \mu \mathrm{~mol}$) was added, and the reaction mixture was shaken for 3 h in the dark. Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15$\left.38: 62, t_{\mathrm{R}}=20 \mathrm{~min}\right)$ afforded $78(0.94 \mathrm{mg}, 0.90 \mu \mathrm{~mol}, 22 \%)$ as a red solid. RP-HPLC (Method A, 220 nm): 95\% $\left(t_{\mathrm{R}}=14.0 \mathrm{~min}, k=4.4\right)$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\left[\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$821.4497, found 821.4509. $\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{~N}_{8} \mathrm{O}_{4}{ }^{+} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}-(822.05+114.02+113.02)$.

4. ${ }^{1} \mathrm{H}$-NMR und ${ }^{13} \mathrm{C}$-NMR Spectra of Compounds 53-76

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 53

${ }^{13} \mathrm{C}$-NMR of compound 53

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 54

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 54

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 5}$

${ }^{13} \mathrm{C}$-NMR of compound 55

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 56

${ }^{13} \mathrm{C}$-NMR of compound 56

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 7}$

${ }^{13} \mathrm{C}$-NMR of compound 57

DMSO

${ }^{13} \mathrm{C}$-NMR of compound 58

${ }^{1} \mathrm{H}$-NMR of compound 59

${ }^{13} \mathrm{C}$-NMR of compound 59

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 0}$

${ }^{13} \mathrm{C}$-NMR of compound 60

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{6 1}$

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{6 1}$

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{6 2}$

${ }^{13} \mathrm{C}$-NMR of compound 62

${ }^{13} \mathrm{C}$-NMR of compound 63

${ }^{1} \mathrm{H}$-NMR of compound 64

${ }^{13} \mathrm{C}$-NMR of compound 64

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 65

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 66

${ }^{13} \mathrm{C}$-NMR of compound 66

${ }^{1} \mathrm{H}$-NMR of compound 67

${ }^{13} \mathrm{C}$-NMR of compound 67

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 68

${ }^{13} \mathrm{C}$-NMR of compound 68

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 69

${ }^{13} \mathrm{C}$-NMR of compound 69

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 70

${ }^{13} \mathrm{C}$-NMR of compound 70

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{7 1}$

${ }^{13} \mathrm{C}$-NMR of compound 71

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{7 2}$

${ }^{13} \mathrm{C}$-NMR of compound 72

${ }^{13} \mathrm{C}$-NMR of compound 73

${ }^{13} \mathrm{C}$-NMR of compound 74

${ }^{1} \mathrm{H}$-NMR of compound 75

${ }^{13} \mathrm{C}$-NMR of compound 75

${ }^{1} \mathrm{H}$-NMR of compound 76

${ }^{13} \mathrm{C}$-NMR of compound 76

5. RP-HPLC Purity Chromatograms of Compounds 53-76 and 78

RP-HPLC chromatogram of 53

RP-HPLC chromatogram of 55

RP-HPLC chromatogram of $\mathbf{5 7}$

RP-HPLC chromatogram of $\mathbf{5 4}$

RP-HPLC chromatogram of 56

RP-HPLC chromatogram of 58

RP-HPLC chromatogram of $\mathbf{5 9}$

RP-HPLC chromatogram of 61

RP-HPLC chromatogram of 63

RP-HPLC chromatogram of $\mathbf{6 0}$

RP-HPLC chromatogram of 62

RP-HPLC chromatogram of 64

RP-HPLC chromatogram of 65

RP-HPLC chromatogram of 67

RP-HPLC chromatogram of 69

RP-HPLC chromatogram of 66

RP-HPLC chromatogram of 68

RP-HPLC chromatogram of 70

RP-HPLC chromatogram of $\mathbf{7 1}$

RP-HPLC chromatogram of 73

RP-HPLC chromatogram of 75

RP-HPLC chromatogram of 72

RP-HPLC chromatogram of 74

RP-HPLC chromatogram of 76

6. Investigation of the Chemical Stability of Compounds 56, 58-61, 63 and 68

To determine the chemical stability, compounds 56, 58-61, 63 and $68(100 \mu \mathrm{M})$ were incubated in buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{CaCl}_{2} \times \mathrm{H}_{2} 0,1.2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.2 \mathrm{mM} \mathrm{Mg}_{2} \mathrm{SO}_{4} \times \mathrm{XH}_{2} \mathrm{O}, 25 \mathrm{mM}$ $\mathrm{NaHCO}_{3}, \mathrm{pH} 7$) at rt for 24 h . The solution was diluted (1:1) with $10 \% \mathrm{aq} \mathrm{TFA}$ and the stability monitored at 6 time intervals ($0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h) by analytical HPLC analysis (Method A, 220 nm).

RP-HPLC chromatogram of 56

RP-HPLC chromatogram of 58

RP-HPLC chromatogram of 59

RP-HPLC chromatogram of $\mathbf{6 1}$

RP-HPLC chromatogram of 60

RP-HPLC chromatogram of 63

RP-HPLC chromatogram of 68

7. References

1. M. Keller, S. Weiss, C. Hutzler, K. K. Kuhn, C. Mollereau, S. Dukorn, L. Schindler, G. Bernhardt, B. Konig and A. Buschauer, J. Med. Chem., 2015, 58, 8834-8849.
2. Z. Yang, S. Han, M. Keller, A. Kaiser, B. J. Bender, M. Bosse, K. Burkert, L. M. Kogler, D. Wifling, G. Bernhardt, N. Plank, T. Littmann, P. Schmidt, C. Yi, B. Li, S. Ye, R. Zhang, B. Xu, D. Larhammar, R. C. Stevens, D. Huster, J. Meiler, Q. Zhao, A. G. Beck-Sickinger, A. Buschauer and B. Wu, Nature, 2018, 556, 520-524.
3. A. A. Bastian, A. Marcozzi and A. Herrmann, Nat. Chem., 2012, 4, 789.
4. E. Grochowski and J. Jurczak, Synthesis, 1977, 1977, 277-279.
5. S. Laurent, F. Botteman, L. V. Elst and R. N. Muller, Helv. Chim. Acta, 2004, 87, 1077-1089.
6. G. A. Andrade, A. J. Pistner, G. P. A. Yap, D. A. Lutterman and J. Rosenthal, ACS Catal., 2013, 3, 1685-1692.
7. K. Stembera, A. Buchynskyy, S. Vogel, D. Knoll, A. A. Osman, J. A. Ayala and P. Welzel, ChemBioChem, 2002, 3, 332-340.
8. M. Keller, N. Pop, C. Hutzler, A. G. Beck-Sickinger, G. Bernhardt and A. Buschauer, J. Med. Chem., 2008, 51, 8168-8172.
9. WO2014/053968A1, 2014.
10. L. Wang, V. S. Guillen, N. Sharma, K. Flessa, J. Min, K. E. Carlson, W. Toy, S. Braqi, B. S. Katzenellenbogen, J. A. Katzenellenbogen, S. Chandarlapaty and A. Sharma, ACS Med. Chem. Lett., 2018, 9, 803-808.
11. M. Kim and K.-J. Han, Synth. Commun., 2009, 39, 4467-4472.
12. J. K. Kerkovius and F. Menard, Synthesis, 2016, 48, 1622-1629.
13. N. Pluym, P. Baumeister, M. Keller, G. Bernhardt and A. Buschauer, ChemMedChem, 2013, 8, 587-593.
14. K. Kuhn, PhD thesis, University of Regensburg, 2017.
