Electronic supplementary information

Identifying the best metal–organic frameworks and unravelling different mechanisms for the separation of pentane isomers

Zhiwei Qiao,^{ab} Anthony K. Cheetham^{cd} and Jianwen Jiang*^a

^aDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore

^bSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China

^cDepartment of Materials Science and Engineering, National University of Singapore, 117576, Singapore

^dMaterials Research Laboratory, University of California, Santa Barbara, CA 93106, USA

Table of Contents

1. Physical properties of C ₅ isomers	S2
2. Adsorption energies of single C_5 isomers	S2
3. VICDOC	S3
4. Best MOFs with six separation mechanisms	S4
5. Adsorption capacity and selectivity versus ϕ , LCD and VSA	S5
6. Pore size distribution between d_1 and d_2	S6
7. Simulation snapshots for different separation mechanisms	S7
8. Molecular models	S13

1. Physical properties of C5 isomers

Isomer	Boiling point (°C)	Critical temperature (°C)	Critical pressure (bar)	Kinetic diameter (Å)
<i>n</i> -C ₅	36.0	196.6	33.6	4.3
iso-C ₅	27.7	187.8	33.8	5.0
neo-C ₅	9.5	160.6	31.9	6.2

Table S1 Physical properties of C₅ isomers.¹

2. Adsorption energies of single C5 isomers

Table S2 Adsorption energies of single C_5 isomers in MOFs with very large pores.

MOE		LCD (Å)	Δ	E (kJ/mo	l)
MOF	FLD (A)	LCD (A)	n-C ₅	iso-C ₅	neo-C ₅
BAZGAM	24.24	42.80	-18.61	-17.66	-15.64
BEDYEQ	31.49	33.06	-32.29	-30.48	-27.81
RAVXIX	56.26	53.58	-36.46	-35.06	-31.43
RAVXOD	71.50	71.64	-36.99	-34.91	-30.25

3. VICDOC

Fig. S1 VICDOC.

Table S3 Adsorption of equimolar C_5 isomer mixture in VICDOC at 373 K and a total pressure of 30 kPa.

N_{C_5} (mol/kg)	2.59
N_{n-C_5} (mol/kg)	2.48
N_{iso-C_5} (mol/kg)	0.11
N_{neo-C_5} (mol/kg)	$4.20 imes 10^{-5}$
$S_{n-/iso-C_5}$	22.97
$S_{n-/neo-C_5}$	$5.91 imes 10^4$
Siso-/neo-C5	2.57×10^3

4. Best MOFs

 Table S4 Best MOFs with six separation mechanisms.

Т	уре	Separation*	Benchmark	CSD code	LCD (Å)	N _{C5} (mol/kg)	Sn-/iso-C5 [Siso-/n-C5]**	Sn-/neo-C5 [Sneo-/n-C5]**	Siso-/neo-C5 [Sneo-/iso-C5]**
				ADIQEL	4.43	2.75 ± 0.04	$(8.18 \pm 0.69) \times 10^4$	$> 10^{6}$	
				WUCRUH	4.32	1.13 ± 0.06	$(6.08 \pm 1.42) \times 10^3$	$> 10^{6}$	
		<i>n-/iso-</i> C ₅	$N_{C5} > 1 \text{ mol/kg}$ $S_{n-iiso-C5} > 6000$	HEXNII	4.82	1.17 ± 0.02	$(1.50 \pm 0.77) \times 10^4$	$> 10^{6}$	
1		n-/neo-C5	$S_{n-/neo-C_5} > 10^4$	MIMVEJ	4.72	2.32 ± 0.05	$(9.18 \pm 2.85) \times 10^5$	$> 10^{6}$	
				FUDQIF	4.38	1.32 ± 0.06	$> 10^{6}$	$> 10^{6}$	
				PARMIG	4.62	2.20 ± 0.11	$> 10^{6}$	$> 10^{6}$	
			$N_{\rm C5} > 1.9 \text{ mol/kg}$	XUNGOD	5.28	2.31 ± 0.26		$(4.88 \pm 0.78) \times 10^2$	$(4.22 \pm 0.71) \times 10^2$
	2i	n-/neo-C5	$N_{iso-C_5} > 0.4 \text{ mol/kg}$ $S_{n-/neo-C_5} > 400$	GIFKAH	4.61	1.92 ± 0.33		$> 10^{6}$	$> 10^{6}$
n		iso-/neo-C5	$S_{iso-/neo-C_5} > 400$	AFITEP	4.64	2.63 ± 0.36		$> 10^{6}$	$> 10^{6}$
2	2ii	<i>n-/neo-</i> C ₅	$N_{\rm C_5} > 1.9 \text{ mol/kg}$ $N_{iso-C_5} > 0.4 \text{ mol/kg}$	GOGWAB	4.96	2.82 ± 0.59		$(1.06 \pm 0.83) \times 10^4$	$(7.52 \pm 6.01) \times 10^3$
		iso-/neo-C ₅	$S_{n-/neo-C_5} > 400$ $S_{iso-/neo-C_5} > 400$	WAZQIZ	5.13	2.15 ± 0.32		$(2.10 \pm 0.40) \times 10^3$	$(1.15 \pm 0.28) \times 10^3$
				INAMUG	5.66	0.89 ± 0.22	0.091 ± 0.077	0.032 ± 0.023	
			$N_{\rm C_5} > 0.4 \; {\rm mol/kg}$	VUVCUO	5 67	0.42 + 0.00	$[11.05 \pm 9.43]$ 0.053 ± 0.017	(51.30 ± 25.27) 0.032 ± 0.008	
				XUVOUQ	5.07	0.45 ± 0.09	$[18.78 \pm 6.05]$	$[31.18 \pm 7.65]$	
	2;	iso-/n-C5		MAJHUC	5.75	0.91 ± 0.29	$[8.38 \pm 4.09]$	$[11.32 \pm 2.72]$	
	$neo-/n-C_5$	$S_{iso-/n-C_5} > 8$ $S_{max} / r_{C_5} > 10$	OVICUS	5.89	1.26 ± 0.22	0.044 ± 0.026	0.037 ± 0.022		
3			Sneo-/n-C5 > 10	SEMEIB	6 30	1.98 ± 0.37	0.094 ± 0.068	0.031 ± 0.020	
				SEMI ID	0.50	1.70 ± 0.57	$[10.59 \pm 7.60]$ 0.063 ± 0.015	$[31.84 \pm 20.48]$ 0.024 ± 0.003	
				SEMFEX	5.92	2.14 ± 0.27	$[15.88 \pm 3.89]$	$[41.14 \pm 5.42]$	
	3ii	iso-/n-C5 neo-/n-C5	$N_{C_5} > 0.7 \text{ mol/kg}$ $S_{iso-/n-C_5} > 3$ $S_{neo-/n-C_5} > 4$	TACPAP	6.19	0.77 ± 0.23	$\begin{array}{c} 0.332 \pm 0.323 \\ [3.00 \pm 2.92] \end{array}$	$\begin{array}{c} 0.201 \pm 0.182 \\ [4.98 \pm 4.51] \end{array}$	
4		neo-/n-C5 neo-/iso-C5	$N_{C_5} > 0.9 \text{ mol/kg}$ $S_{neo-/n-C_5} > 15$	QUPJAN	5.93	0.95 ± 0.12		0.063 ± 0.050 [15.93 ± 12.68]	0.465 ± 0.078 [2.15 ± 0.36]
			$S_{neo-/iso-C_5} > 2$	DAWDUA	5 52	1.64 + 0.20	0.28 ± 0.16		72.28 + 12.06
				DAWBUA	5.55	1.64 ± 0.39	$[3.57 \pm 2.02]$		72.38 ± 13.96
				QARCET	5.63	1.21 ± 0.11	$[3.64 \pm 0.58]$		29.43 ± 3.79
~	5 <i>iso-/n-</i> C ₅ <i>iso-/neo-</i> C ₅	iso-/n-C5	$N_{\rm C_5} > 0.7 \; {\rm mol/kg}$	HIZQEN	5.11	1.66 ± 0.36	0.47 ± 0.17 [2.12 ± 0.77]		76.67 ± 47.86
5		iso-/neo-C5	$S_{iso-/n-C_5} > 2$ $S_{iso-/neo-C_5} > 25$	VAPFUP	5.16	0.75 ± 0.18	0.20 ± 0.13 [5.09 ± 3.45]		$(7.04 \pm 1.78) \times 10^3$
			ACOLIP	4.91	1.53 ± 0.36	$\begin{array}{c} 0.39 \pm 0.17 \\ [2.53 \pm 1.11] \end{array}$		$(5.95 \pm 5.06) \times 10^3$	
				QULLEP	4.90	0.93 ± 0.21	0.26 ± 0.12 [3.86 ± 1.78]		$> 10^{6}$
6		<i>n-/iso</i> -C ₅ <i>neo-/iso</i> -C ₅	$\frac{N_{\rm C_5} > 1.0 \text{ mol/kg}}{S_{n-liso-\rm C_5} > 100}$ Sneo-liso-C ₅ > 100	ODOXEK	5.23	1.04 ± 0.12	189.27 ± 90.40		0.0029 ± 0.0015 [344.80 ± 173.76]

* a/b: *a* is preferentially adsorbed. If $S_{a/b} > 10^6$, the capacity of *b* is vanishingly small. **[...]: inverse-shape selectivity in blue.

5. Adsorption capacity and selectivity versus ϕ , LCD and VSA

Fig. S2 Adsorption capacity and selectivity versus ϕ , VSA and LCD.

6. Pore size distribution between d_1 and d_2

The pore size distribution (PSD) between d_1 and d_2 is defined as²

$$PSD\%_{(d_1 \sim d_2)} = A_{12} / A_{total} \times 100\%$$

where A_{total} is the area under the entire PSD curve and A_{12} is the area between d_1 and d_2 .

Fig. S3 Pore size distribution between d_1 and d_2 .

7. Simulation snapshots for different separation mechanisms

Fig. S4.1 Simulation snapshots for the separation of *n*-/*iso*-C₅, *n*-/*neo*-C₅.

XUNGOD

GIFKAH

AFITEP

GOGWAB

WAZQIZ

Fig. S4.2 Simulation snapshots for the separation of n-/neo-C₅, iso-/neo-C₅.

INAMUG

XUVGUQ

MAJHUC

OVICUS

SEMFIB

SEMFEX

TACPAP

Fig. S4.3 Simulation snapshots for the separation of *iso-/n*-C₅, *neo-/n*-C₅.

Fig. S4.4 Simulation snapshot for the separation of *neo-/n*-C₅, *neo-/iso*-C₅.

DAWBUA

QARCET

HIZQEN

VAPFUP

ACOLIP

QULLEP

Fig. S4.5 Simulation snapshots for the separation of *iso-/n*-C₅, *iso-/neo*-C₅.

ODOXEK

Fig. S4.6 Simulation snapshot for the separation of n-/iso-C₅, neo-/iso-C₅.

8. Molecular models

Atom	ε/k _B [K]	σ[Å]	Atom	<i>ɛ/k</i> в [K]	σ [Å]	Atom	ε/k _B [K]	σ[Å]
Ac	16.60	3 10	Ge	190.69	3 81	Ро	163.52	4 20
Ag	18.11	2.80	Gd	4.53	3.00	Pr	5.03	3.21
Al	254.09	4.01	H	22.14	2.57	Pt	40.25	2.45
Am	7.04	3.01	Hf	36.23	2.80	Pu	8.05	3.05
Ar	93.08	3.45	Hg	193.71	2.41	Ra	203.27	3.28
As	155.47	3.77	Ho	3.52	3.04	Rb	20.13	3.67
At	142.89	4.23	Ι	170.57	4.01	Re	33.21	2.63
Au	19.62	2.93	In	301.39	3.98	Rh	26.67	2.61
В	90.57	3.64	Ir	36.73	2.53	Rn	124.78	4.25
Ba	183.15	3.30	Κ	17.61	3.40	Ru	28.18	2.64
Be	42.77	2.45	Kr	110.69	3.69	S	137.86	3.59
Bi	260.63	3.89	La	8.55	3.14	Sb	225.91	3.94
Bk	6.54	2.97	Li	12.58	2.18	Sc	9.56	2.94
Br	126.29	3.73	Lu	20.63	3.24	Se	146.42	3.75
С	52.83	3.43	Lr	5.53	2.88	Si	202.27	3.83
Ca	119.75	3.03	Md	5.53	2.92	Sm	4.03	3.14
Cd	114.72	2.54	Mg	55.85	2.69	Sn	285.28	3.91
Ce	6.54	3.17	Mn	6.54	2.64	Sr	118.24	3.24
Cf	6.54	2.95	Mo	28.18	2.72	Та	40.75	2.82
Cl	114.21	3.52	Ν	34.72	3.26	Tb	3.52	3.07
Cm	6.54	2.96	Na	15.09	2.66	Tc	24.15	2.67
Co	7.04	2.56	Ne	21.13	2.66	Te	200.25	3.98
Cr	7.55	2.69	Nb	29.69	2.82	Th	13.08	3.03
Cu	2.52	3.11	Nd	5.03	3.18	Ti	8.55	2.83
Cs	22.64	4.02	No	5.53	2.89	TI	342.14	3.87
Dy	3.52	3.05	Ni	7.55	2.52	Tm	3.02	3.01
Eu	4.03	3.11	Np	9.56	3.05	U	11.07	3.02
Er	3.52	3.02	0	30.19	3.12	V	8.05	2.80
Es	6.04	2.94	Os	18.62	2.78	W	33.71	2.73
F	25.16	3.00	Р	153.46	3.69	Xe	167.04	3.92
Fe	6.54	2.59	Pa	11.07	3.05	Y	36.23	2.98
Fm	6.04	2.93	Pb	333.59	3.83	Yb	114.72	2.99
Fr	25.16	4.37	Pd D	24.15	2.58	Zn	62.39	2.46
Ga	208.81	3.90	Pm	4.53	3.16	Zr	34.72	2.78

 Table S5
 Lennard-Jones parameters of CoRE-MOFs.³

Fig. S5 United-atom model of C₅ isomers.

 C_5 isomers (*n*- C_5 , *iso*- C_5 and *neo*- C_5) were represented by a united-atom model with CH_x (x = 3, 2, 1 and 0) as a single interaction site (**Fig. S5**). In addition to the nonbonded Lennard-Jones potential, there exist bond bending and torsional potentials,

$$u_{\text{bending}}(\theta) = 0.5k_{\theta}(\theta - \theta^{\circ})^{2}$$
$$u_{\text{torsion}}(\varphi) = c_{0} + c_{1}[1 + \cos\varphi] + c_{2}[1 - \cos(2\varphi)] + c_{3}[1 + \cos(3\varphi)]$$

where θ and φ are the bending and torsional angles, respectively; k_{θ} and c_i are the force constants. These parameters (**Table S6**) were adopted from the transferable potentials for phase equilibria (TraPPE) force field.⁴ The cross interaction parameters between MOFs and C₅ isomers were estimated by the Lorentz-Berthelot combining rules.

Atom	$\varepsilon/k_{\rm B}$ (K)	σ (Å)
CH ₃	98.0	3.75
CH_2	46.0	3.95
CH	10.0	4.68
С	0.5	6.40

 Table S6
 Lennard-Jones, bond bending and torsional potential parameters.

n-C ₅			iso-C ₅			neo-C ₅		
	$ heta^{ m o}$	$k_{\theta}/k_{\rm B}$ (K/rad ²)		$ heta^{ m o}$	$k_{\theta}/k_{\rm B}$ (K/rad ²)		$ heta^{ m o}$	$k_{\theta}/k_{\rm B}$ (K/rad ²)
CH ₃ -CH ₂ -CH ₂	114.0°	62500	CH ₃ -CH ₂ -CH	114.0°	62500	CH ₃ -C-CH ₃	109.5°	62500
			CH ₃ –CH–CH ₃	112.0°	62500			
			CH ₃ –CH–CH ₃	112.0°	62500			

n-C ₅					
	$c_0/k_{\rm B}({\rm K})$	$c_1/k_{\rm B}({\rm K})$	$c_2/k_{\rm B}({\rm K})$	$c_{3}/k_{\mathrm{B}}(\mathrm{K})$	
CH ₃ -CH ₂ -CH ₂ -CH ₂	0.00	355.03	-68.19	791.32	
	iso-	C ₅			
	$c_0/k_{\rm B}({\rm K})$	$c_1/k_{\rm B}({\rm K})$	$c_2/k_{\rm B}\left({\rm K}\right)$	$c_{3}/k_{\mathrm{B}}\left(\mathrm{K}\right)$	
CH3-CH-CH2-CH3	-251.06	428.73	-111.85	441.27	

	This study	Krishna and van Baten ⁵
N_{n-C_5} (mol/kg)	1.84	1.81
Niso-C5 (mol/kg)	$9.5 imes 10^{-2}$	6.0×10^{-2}
N_{neo-C_5} (mol/kg)	$2.5 imes 10^{-4}$	4.4×10^{-4}

Table S7 Adsorption of equimolar C_5 isomer mixture in VICDOC at 433 K and a total pressure of 30 kPa.

References

- 1. Linstrom, P. J., NIST Chemistry WebBook. 2010.
- Qiao, Z.; Peng, C.; Zhou, J.; Jiang, J. W., High-Throughput Computational Screening of 137953 Metal-Organic Frameworks for Membrane Separation of a CO₂/N₂/CH₄ Mixture. *J. Mater. Chem. A* 2016, 4, 15904-15912.
- Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF: A Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. *J. Am. Chem. Soc.* 1992, 114, 10024-10035.
- 4. Martin, M. G.; Siepmann, J. I., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of *n*-Alkanes. *J. Phys. Chem. B* 1998, 102, 2569-2577.
- 5. Krishna, R.; van Baten, J. M., Screening Metal-Organic Frameworks for Separation of Pentane Isomers. *Phys. Chem. Chem. Phys.* 2017, 19, 8380-8387.