Supporting Information (SI)

Customization of molecular structure to modulate the crystal packing style of energetic materials

Qi Huang^{*, †}, *Zhicheng Guo*[§], *Longyu Liao*[‡], *Shilong Hao*[‡], *Fude Nie*[‡] and Hongzhen

 $Li^{*, \ddagger}$

[†]State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China

§Sichuan Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China

‡Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China

Compound	Al	A2	A3	
CCDC number	1554917	1554918	1554915	
Empirical formula	$C_6H_6N_8O_8$	$C_8H_8N_{10}O_{14}$	$C_6H_6N_8O_9$	
Formula weight	318.19	468.24	334.19	
Temperature	293(2) K	293(2) K	293(2) K	
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	
Crystal system	Orthorhombic	Tetragonal	Monoclinic	
Space group	Pbca	P 4 ₃ 2 ₁ 2	$P2_l/c$	
	a = 11.0661(15) Å	a = 7.0912(5) Å	a = 7.6484(13) Å	
	b = 13.9316(19) Å	b = 7.0912(5) Å	b = 16.154(3) Å	
Unit cell	c = 15.839(2) Å	c = 34.097(4) Å	c = 11.156(2) Å	
dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 106.283(4)^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	
Volume	2441.8(6) Å ³	1714.6(3) Å ³	1323.0(4) Å ³	
Z	8	4	4	
Density	1.731 Mg/m ³	1.814 Mg/m ³	1.678 Mg/m ³	
Absorption coefficient	0.160 mm ⁻¹	0.175 mm ⁻¹	0.158 mm ⁻¹	
F(000)	1296	952	680	
Crystal size	$0.22 \ x \ 0.17 \ x \ 0.12 \ mm^3$	$0.20 \ x \ 0.17 \ x \ 0.11 \ mm^3$	0.22 x 0.18 x 0.10 mm ³	
Theta range for data	2 572 (26 0000	2.389 to 25.497°	2.282 to 25.494°	
collection	2.572 to 26.000°			
	-13<=h<=13	-8<=h<=6	-9<=h<=9	
Index ranges	-17<=k<=17	-8<=k<=8	-19<=k<=19	
	-19<=1<=15	-41<=l<=38	-13<=l<=10	
Reflections collected	13736	9946	7408	
Independent reflections	2401 [$R_{(int)} = 0.0475$]	$1603 [R_{(int)} = 0.0375]$	2459 $[R_{(int)} = 0.0414]$	
Completeness to theta =	100.000/	100.000/	00.000/	
25.242°	100.00%	100.00%	99.90%	
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from	
	equivalents	equivalents	equivalents	
Max. and min.	*	*		
transmission	0.7456 and 0.6254	0.7456 and 0.6732	0.7456 and 0.6433	
	Full metrix least squares	Full metrix least squares	Full matrix logat squares	
Refinement method	Full-Inditix least-squares	Full-Inditix least-squares	Full-Indulty least-squales	
Della internet	on F ²	on F ²	on F2	
Data/ restraints /	2401 / 0 / 202	1603 / 0 / 146	2459 / 0 / 210	
parameters				
Goodness-of-fit on F ²	1.089	1.083	1.068	
Final R indices	$R_1 = 0.0464$	$R_1 = 0.0390$	$R_1 = 0.0499$	
[I>2sigma(I)] wR ₂ = 0.1049		$wR_2 = 0.0956$	$wR_2 = 0.1207$	
R indices (all data)	$R_1 = 0.0598$	$R_1 = 0.0427$	$R_1 = 0.0651$	
	$wR_2 = 0.1110$	$wR_2 = 0.0978$	$wR_2 = 0.1307$	
Largest diff.			0.260 and -0.151 e.Å ⁻³	
peak and hole	0.229 and -0.181 e.A ⁻³	0.177 and -0.153 e.A ⁻³		

Section S1. Crystal data and structure refinement for A1, A2 and A3 Table S1. Crystallographic data of A1, A2 and A3.

Section S2. 2D-fingerprint and the associated Hirshfeld surfaces of A1, A2 and

Figure S1. (a) The Hirshfeld surface; (b) The 2D-fingerprint plots; (c) The individual atomic percentage contribution to the Hirshfeld surface of ANPZ in crystal stacking.

Figure S2. (a) The Hirshfeld surface; (b) The 2D-fingerprint plots; (c) The individual atomic percentage contribution to the Hirshfeld surface of DMDNP in crystal stacking.

Figure S3. (a) The Hirshfeld surface; (b) The 2D-fingerprint plots; (c) The individual atomic percentage contribution to the Hirshfeld surface of A1 in crystal stacking.

Figure S4. (a) The Hirshfeld surface; (b) The 2D-fingerprint plots; (c) The individual atomic percentage contribution to the Hirshfeld surface of A2 in crystal stacking.

Figure S5. (a) The Hirshfeld surface; (b) The 2D-fingerprint plots; (c) The individual atomic percentage contribution to the Hirshfeld surface of A3 in crystal stacking.

Section S3. Metadata of heat of formation^[1, 2]

Molecul e	E ₀ (kJ/mol)	ZPE(kj/mol)	E _e (kJ/mol) ^a	H ₂₉₈ (kJ/mol) ^b	ΔH_f (298 K) (kJ/mol)
	-	441.170675	-	2224550 670	271 0942017
A1	3334605.646	1	3335046.817	-3334330.079	2/1.084291/
	-	621.261610	-	5007719 /11	00 60274011
A2	5007796.486	3	5008417.747	-3007/18.411	90.00374911
	-	447.235580	-	2521610 865	240 1977297
A3	3531669.262	6	3532116.497	-5551010.805	547.10//30/

Table S2. Total energies and heat of formation of A1, A2 and A3.

^aThe *E_e* energies (in hartrees) of the atoms are H (-0.503351), C (-37.788532), N (-54.524842), O

(-74.993634).

 ${}^{b}H_{298}$ is the calculated enthalpy of the molecule at 298 K.

^cCalculation by Eq. (1) from Reference 2.

Eq. (1):

$$\Delta_{f}H(A_{x}B_{y}C_{z},298K) = \Delta_{f}H(A_{x}B_{y}C_{z},0K) + [H(A_{x}B_{y}C_{z},298K) - H(A_{x}B_{y}C_{z},0K)] - x[H(A,298K) - H(A,0K)] - y[H(B,298K) - H(B,0K)] - z[H(C,298K) - H(C,0K)]$$

Reference

- L. A. Curtiss, K. Raghavachari, P. W. Deutsch and J. A. Pople, *The Journal of Chemical Physics*, 1991, **95**, 2433-2444.
- 2. L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, *The Journal of Chemical Physics*, 1997, **106**, 1063-1079.