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Scheme S1: Synthetic scheme for the synthesis of 1-8.
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Table S1: Association constant data obtained from fits of absorption titration data. Stepwise data constants are reported
along with the overall binding constant for compounds 1-3.

K11 (MY) Ka1 (M) Ka (M)

1 6.93 x 10! (+ 4 %) 7.70x 107 (9 %)  5.37 x 10° (+ 4 %)
2 1.15x 102 (7 %)  3.93x 108 (+17 %) 4.52 x 1010 (+ 18 %)

3 1.89 x 10° (+ 8 %) 7.57 x 105 (+ 8 %)  1.43 x 1011 ( 12 %)
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Figure S1: Calculated absorbance spectrum of 2 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S2: Calculated absorbance spectrum of 3 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S3: Calculated absorbance spectrum of 4 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S4: Calculated absorbance spectrum of 5 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S5: Calculated absorbance spectrum of 6 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.

S6



40000

35000

30000

25000

Epsilon
[\ ]
8
8

15000

10000

5000

150 250 350 450 550 650
Wavelength (nm)

Figure S6: Calculated absorbance spectrum of 7 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S7: Calculated absorbance spectrum of 8 (0.3 eV FVHM) as determined by TD-DFT calculations using
B3Lyp/6-311+G(d) basis set.
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Figure S8: Change in absorption spectrum of 2 (1 x 10" M) in response to mercury(ll) forming the second product in
CHsCN.
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Figure S9: Change in absorption spectrum of 3 in response to mercury(ll) forming the second product in CHzCN.
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Figure S10: Change in absorption spectrum of 4 in response to mercury(ll) forming the second product in CHsCN.
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Figure S11: Change in absorption spectrum of 5 in response to mercury(ll) forming the second product in CH3CN.
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Figure S12: Change in absorption spectrum of 6 in response to mercury(ll) forming the second (a), and third (b) product

in CHsCN.
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Figure S13: Change in absorption spectrum of 7 in response to mercury(ll) forming the second product in CHsCN.
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Figure S14: Change in absorption spectrum of 8 in response to mercury(ll) forming the second (a), and third (b) product

in CHsCN.
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Figure S15: Change in emission spectrum of 2 in response to mercury(ll) to form the first (a) and second (b) product

in CHsCN.
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Figure S16: Change in emission spectrum of 3 in response to mercury(ll) to form the first (a) and second (b) product

in CHsCN.
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Figure S17: Change in emission spectrum of 4 in response to mercury(ll) to form the first (a) and second (b) product

in CHsCN.
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Figure S20: Change in emission spectrum of 7 in response to mercury(ll) to form the first (a) and second (b) product
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Figure S21: Change in emission spectrum of 8 in response to mercury(ll) to form the first (a), second (b), and third

(c) product in CHsCN.
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Figure S23: Absorption spectrum of 3 (1 x 10> M) under neutral and acidic conditions.
30000 -
25000 A

—pH 6.91

300 400 500
Wavelength (nm)

Figure S24: Absorption spectrum of 4 (1 x 10-5 M) in acidic and neutral conditions.
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Figure S25: Emission spectrum of 2 (1 x 10" M) in basic and neutral conditions.
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Figure S26: Emission spectrum of 3 (1 x 10> M) under acidic and neutral conditions.
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Figure S27: Emission spectrum of 4 (1 x 105 M) under acidic and neutral conditions.
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Figure S28: Absorption spectrum a solution of 3 prior to the addition of mercury(ll) (red), after the addition of mercury(ll)
(blue), and subsequent addition of EDTA (green).
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Figure S29: Job’s plot for compound 2 with mercury(ll) perchlorate, obtained from absorbance spectra.
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Figure S30: Job’s plot for compound 3 with mercury(ll) perchlorate, obtained from absorbance spectra.
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Figure S31: Job’s plot for compound 4 with mercury(ll) perchlorate, obtained from absorbance spectra.
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Figure S32: Absorption titration data (dots) overlaid with calculated fit (line) for compound 1. Titration data was fit for
the change in absorbance at both 368 nm (blue) and 342 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model.

S16



0.25

5 02
s
$0.15
c
©
£ 0.1
o
3
< 0.05
0 +——r—F——r——++

0 2 4 6 8
Hg mol equivalents ([Hgl/[2,])

Figure S33: Absorption titration data (dots) overlaid with calculated fit (line) for compound 2. Titration data was fit for
the change in absorbance at both 385 nm (blue) and 351 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model.
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Figure S34: Absorption titration data (dots) overlaid with calculated fit (line) for compound 3. Titration data was fit for
the change in absorbance at both 392 nm (blue) and 349 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model, for non-cooperative binding.
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Figure S35: Absorption titration data (dots) overlaid with calculated fit (line) for compound 5. Titration data was fit for
the change in absorbance at both 385 nm (blue) and 343 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model, for non-cooperative binding.
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Figure S36: Absorption titration data (dots) overlaid with calculated fit (line) for compound 6. Titration data was fit for
the change in absorbance at both 399 nm (blue) and 354 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model, for non-cooperative binding.
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Figure S37: Absorption titration data (dots) overlaid with calculated fit (line) for compound 7. Titration data was fit for
the change in absorbance at both 369 nm (blue) and 345 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model, for non-cooperative binding.
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Figure S38: Absorption titration data (dots) overlaid with calculated fit (line) for compound 8. Titration data was fit for
the change in absorbance at both 392 nm (blue) and 349 nm (green) to obtain binding constants. Fit was obtained
using the Thordarson Program for the 2:1 Nelder-Mead model, for non-cooperative binding.
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Figure S39: Absorption titration of 2 with mercury(ll) in 50:50 CH3CN:H2O.
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Figure S40: Absorption titration of 3 with mercury(ll) in 50:50 CH3sCN:H20
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Figure S41: Absorption titration of 4 with mercury(ll) in 50:50 CH3CN:H20
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Figure S42: Emission titration of 2 with mercury(ll) in 50:50 CH3CN:Hz0.
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Figure S43: Emission titration of 3 with mercury(ll) in 50:50 CH3CN:H20.
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Figure S44: Emission titration of 4 with mercury(ll) in 50:50 CH3CN:H20.
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Figure S45: *H NMR titration of 5 at 4 x 10 M with increasing amounts of mercury(ll) in CDsCN.
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Figure S46: *H NMR titration of 6 at 4 x 10 M with increasing amounts of mercury(ll) in CD3CN.
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Figure S47: *H NMR titration of 7 at 4 x 10 M with increasing amounts of mercury(ll) in CDsCN.
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Figure S48: *H NMR titration of 8 at 4 x 10 M with increasing amounts of mercury(ll) in CDsCN.
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Figure S49: Absorption at 381 nm of 5 (white bars), after the addition of 5 eq. of metal ion (green bars), and
subsequent addition of 5 eq. of mercury(ll) perchlorate (blue bars) in CHsCN.
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Figure S50: Absorption at 399 nm of 6 (white bars), after the addition of 5 eq. of metal ion (green bars), and
subsequent addition of 5 eq. of mercury(ll) perchlorate (blue bars) in CH3CN.
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Figure S51: Absorption at 386 nm of 7 (white bars), after the addition of 5 eq. of metal ion (green bars), and
subsequent addition of 5 eq. of mercury(ll) perchlorate (blue bars) in CH3CN.
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Figure S52: Absorption at 381 nm of 8 (white bars), after the addition of 5 eq. of metal ion (green bars), and
subsequent addition of 5 eq. of mercury(ll) perchlorate (blue bars) in CH3CN.
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