Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2019

# Crystallization Behavior of Organic Compound Mixed with Polymers by Hidden

## Liquid Phase Domains

#### Gagan N. Kangovi and Sangwoo Lee\*

### Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States

E-mail: lees27@rpi.edu.

\*Corresponding author

#### **Electronic Supplementary Information (ESI)**

Table S1. Thermal characterization data of the binary mixtures of pyrene and the model

| polymers | measured | from | the | DSC | technique. |
|----------|----------|------|-----|-----|------------|
| 1 2      |          |      |     |     | 1          |

| Polystyrene                           |                                          |                                                 |                        |                        |                        |  |  |
|---------------------------------------|------------------------------------------|-------------------------------------------------|------------------------|------------------------|------------------------|--|--|
| $\phi_{\mathrm{PS}}{}^{\mathrm{a}}$   | T (oc)b                                  | $T_{\rm c} (^{\rm o}{\rm C})^{\rm c}$           |                        |                        |                        |  |  |
|                                       | $I_{\rm m}({}^{\rm e}{\rm C})^{\rm e} =$ | 5 °C/min <sup>d</sup>                           | 10 °C/min <sup>d</sup> | 20 °C/min <sup>d</sup> | 30 °C/min <sup>d</sup> |  |  |
| 0.00                                  | $154 \pm 1$                              | $112 \pm 2$                                     | $113 \pm 2$            | $113 \pm 2$            | $111 \pm 1$            |  |  |
| 0.12                                  | $154 \pm 1$                              | $112 \pm 1$                                     | $114 \pm 2$            | $113 \pm 1$            | $112 \pm 1$            |  |  |
| 0.23                                  | $152 \pm 1$                              | $115 \pm 1$                                     | $116 \pm 1$            | $118 \pm 1$            | $114 \pm 2$            |  |  |
| 0.34                                  | $150 \pm 1$                              | $112 \pm 1$                                     | $112 \pm 1$            | $111 \pm 1$            | $111 \pm 1$            |  |  |
| 0.45                                  | $147 \pm 1$                              | $111 \pm 1$                                     | $109\pm3$              | $111 \pm 1$            | $112 \pm 1$            |  |  |
| 0.55                                  | $143 \pm 1$                              | $105 \pm 2$                                     | $101 \pm 2$            | $100 \pm 1$            | $101 \pm 1$            |  |  |
| 0.65 <sup>e</sup>                     | $137 \pm 1$                              | -                                               | -                      | -                      | -                      |  |  |
| 0.74 <sup>e</sup>                     | $127 \pm 2$                              | -                                               | -                      | -                      | -                      |  |  |
| Poly(ethylene- <i>alt</i> -propylene) |                                          |                                                 |                        |                        |                        |  |  |
|                                       | The cost                                 | $\frac{1}{T_{\rm c}} (^{\rm o}{\rm C})^{\rm c}$ |                        |                        |                        |  |  |
| $\phi$ PEP <sup>a</sup>               | $T_{\rm m}(^{\rm o}{\rm C})^{\rm o}$ –   | 5 °C/min <sup>d</sup>                           | 10 °C/min <sup>d</sup> | 20 °C/min <sup>d</sup> | 30 °C/min <sup>d</sup> |  |  |
| 0.00                                  | $154 \pm 1$                              | $112 \pm 2$                                     | $113 \pm 2$            | $113 \pm 2$            | $111 \pm 1$            |  |  |
| 0.07                                  | $154 \pm 1$                              | $114 \pm 3$                                     | $116 \pm 6$            | $116 \pm 7$            | $114 \pm 6$            |  |  |
| 0.25                                  | $153 \pm 1$                              | $123 \pm 2$                                     | $123 \pm 1$            | $122 \pm 1$            | $123 \pm 2$            |  |  |
| 0.39                                  | $153 \pm 1$                              | $115 \pm 1$                                     | $115 \pm 2$            | $115 \pm 3$            | $116 \pm 2$            |  |  |
| 0.50                                  | $153 \pm 1$                              | $116 \pm 2$                                     | $116 \pm 3$            | $115 \pm 1$            | $115 \pm 3$            |  |  |
| 0.60                                  | $151 \pm 1$                              | $113 \pm 3$                                     | $111 \pm 2$            | $110 \pm 2$            | $112 \pm 2$            |  |  |
| 0.69                                  | $149 \pm 1$                              | $111 \pm 1$                                     | $111 \pm 1$            | $112 \pm 3$            | $111 \pm 5$            |  |  |
| 0.78                                  | $146 \pm 1$                              | $99 \pm 3$                                      | $98 \pm 2$             | $97 \pm 3$             | $94 \pm 4$             |  |  |
| Poly(2-vinylpyridine)                 |                                          |                                                 |                        |                        |                        |  |  |
| $\phi_{P2VP}^{a}$                     | T (oc)b                                  | $T_{\rm c}(^{\rm o}{\rm C})^{\rm c}$            |                        |                        |                        |  |  |
|                                       | $I_{\rm m}({}^{\circ}{\rm C})^{\circ}$ — | 5 °C/min <sup>d</sup>                           | 10 °C/min <sup>d</sup> | 20 °C/min <sup>d</sup> | 30 °C/min <sup>d</sup> |  |  |
| 0.00                                  | $154 \pm 1$                              | $112 \pm 2$                                     | $113 \pm 2$            | $113 \pm 2$            | $111 \pm 1$            |  |  |
| 0.10                                  | $154 \pm 1$                              | $116 \pm 2$                                     | $116 \pm 1$            | $116 \pm 2$            | $113 \pm 3$            |  |  |
| 0.21                                  | $151 \pm 1$                              | $117 \pm 3$                                     | $117 \pm 3$            | $116 \pm 5$            | $112 \pm 2$            |  |  |
| 0.32                                  | $148 \pm 1$                              | $130 \pm 3$                                     | $124\pm9$              | $119 \pm 2$            | $126 \pm 5$            |  |  |
| 0.41                                  | $145 \pm 1$                              | $117 \pm 7$                                     | $118 \pm 7$            | $114\pm9$              | $120\pm 8$             |  |  |
| 0.48                                  | $141 \pm 1$                              | $90\pm2$                                        | $99\pm8$               | $93\pm4$               | $90\pm1$               |  |  |
| 0.62 <sup>e</sup>                     | $136 \pm 1$                              | -                                               | -                      | -                      | -                      |  |  |
| 0.71 <sup>e</sup>                     | $127 \pm 1$                              | -                                               | -                      | -                      | -                      |  |  |

<sup>a</sup> Volume fraction of polymer. <sup>b</sup> Melting temperatures of the pyrene crystals reported in our earlier work.<sup>1</sup> <sup>c</sup> Crystallization temperatures of pyrene characterized by cooling sequences. <sup>d</sup>

Cooling rates. <sup>e</sup> Thermograms do not show noticeable crystallization signatures.<sup>1</sup>



**Figure S1.** Cooling DSC thermograms of pyrene in endo-up form. The initiation temperatures of crystallization are marked with red arrows. Thermograms are shifted for clear representations.



**Figure S2.** Cooling DSC thermograms of polystyrene (PS,  $M_n = 23.4 \text{ kg/mol}$ ) and pyrene mixtures at  $\phi_{PS} =$  (a) 12 vol. %, (b) 23 vol. %, (c) 34 vol. %, (d) 45 vol. %, (e) 55 vol. % in endo-up forms. The commencement temperatures of crystallization are marked with red arrows. Thermograms are shifted for clear representations.



**Figure S3.** Cooling DSC thermograms of poly(ethylene-*alt*-propylene) (PEP,  $M_n = 25.5$  kg/mol) and pyrene mixtures at  $\phi_{PEP} = (a)$  7 vol. %, (b) 25 vol. %, (c) 39 vol. %, (d) 50 vol. %, (e) 60 vol. %, (f) 69 vol. %, (g) 78 vol. % in endo-up forms. The commencement temperatures of crystallization are marked with red arrows. Thermograms are shifted for clear representations.



**Figure S4.** Cooling DSC thermograms of poly(2-vinylpyridine) (P2VP,  $M_n = 20.3$  kg/mol) and pyrene mixtures at  $\phi_{P2VP} =$  (a) 12 vol. %, (b) 23 vol. %, (c) 34 vol. %, (d) 45 vol. %, (e) 55 vol. % in endo-up forms. The commencement temperatures of crystallization are marked with red arrows. Thermograms are shifted for clear representations.



**Figure S5.** Effective interaction parameters of pyrene and (a) Poly(2-vinylpyridine), (b) Polystyrene, or (c) Poly(ethylene-*alt*-propylene) at the binodal and crystallization temperatures and compositions based on the parameters extracted from the melting and crystallization temperatures in Figure 6 of the main text. The effective interaction parameters extracted at different temperatures and by the different experimental methods are inconsistent with each other.

**Table S2**. Contributions to the second virial coefficient by Budkov and co-workers.<sup>2</sup> Note that calculated quantities are estimations and not exact.

| Compound                     | $\delta_s \ (MPa^{1/2})^a$ | $\chi_{FH} = \frac{v}{RT} \left( \delta_{PY} - \delta_p \right)^{b}$ | $v\left(\frac{1}{2}-\chi_{FH}\right)(m^3)^c$ |
|------------------------------|----------------------------|----------------------------------------------------------------------|----------------------------------------------|
| Pyrene                       | 21.7                       | -                                                                    |                                              |
| Polystyrene                  | 18.8                       | 0.204                                                                | 7.82×10 <sup>-28</sup>                       |
| Poly(ethylene-alt-propylene) | 17.6                       | 0.407                                                                | 2.44×10 <sup>-28</sup>                       |
| Poly-2-vinylpyridine         | 19.6                       | 0.107                                                                | 10.4×10 <sup>-28</sup>                       |

i) Contribution by the Flory-Huggins interaction parameter.

ii) Contribution by the Keesom dipole-dipole interaction.

| Compound                                        | p (Debye) <sup>d</sup> | $-\frac{16\pi^{3}p^{4}}{27(k_{B}T)^{2}\varepsilon_{s}^{2}v} \text{ (m}^{3}\text{)}^{\text{e}}$ |
|-------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|
| Toluene (Polystyrene)                           | 0.375                  | -0.07×10 <sup>-28</sup>                                                                        |
| Isobutane (Polyethylene- <i>alt</i> -propylene) | 0.132                  | -0.01×10 <sup>-28</sup>                                                                        |
| Pyridine (Poly-2-vinylpyridine)                 | 2.2                    | -82.9×10 <sup>-28</sup>                                                                        |

iii) Contribution by the dielectric mismatch of solvent and polymer.

| Compound                     | $\mathcal{E}r^{\mathrm{f}}$ | $\delta^{	ext{ g}}$ | $\frac{8\pi^2 p^2}{9k_B T \varepsilon_s} \delta (\mathrm{m}^3)^{\mathrm{h}}$ |
|------------------------------|-----------------------------|---------------------|------------------------------------------------------------------------------|
| Pyrene                       | 3.10                        | -                   | -                                                                            |
| Polystyrene                  | 2.69                        | 0.133               | 0.12×10 <sup>-28</sup>                                                       |
| Poly(ethylene-alt-propylene) | 2.51                        | 0.189               | 0.02×10 <sup>-28</sup>                                                       |
| Poly-2-vinylpyridine         | 2.80                        | 0.097               | 3.02×10 <sup>-28</sup>                                                       |

<sup>a</sup> Solubility parameters of the compounds employed in this study.<sup>1 b</sup> Flory-Huggins interaction parameters of pyrene and the polymers employed in study.<sup>3</sup>  $v = 2.64 \times 10^{-28}$  m<sup>3</sup> is the volume of a pyrene molecule in the crystalline state,<sup>4</sup> *R* is the gas constant, *T* is the temperature of the solution which we assume 400K,  $\delta_{PY}$  is the solubility parameter of pyrene, and  $\delta_p$  is the solubility parameter of polymer. <sup>c</sup> First term of the right-hand side of eqn (8) in the main text which is of the Flory-Huggins interaction parameter. <sup>d</sup> Dipole moments of simple liquids assumed comparable to the dipole moments of the chain segments of the polymers in the parenthesis of the compound column.<sup>5</sup> <sup>e</sup> Second term of the right-hand side of eqn (8) in the main text which is of the Keesom dipole-dipole interaction.  $k_{\rm B}$  is the Boltzmann constant and  $\varepsilon_s$  is the dielectric permittivity of solvent which is the permittivity of pyrene in this study. <sup>f</sup> Relative dielectric permittivity  $\varepsilon_{\rm r} = \varepsilon/\varepsilon_0 \approx \delta_s/7$  where  $\varepsilon$  is the dielectric permittivity and  $\varepsilon_0$  is the vacuum permittivity.<sup>6</sup> g  $\delta = (\varepsilon_{\rm s} - \varepsilon_{\rm p})/\varepsilon_{\rm s}$  where  $\varepsilon_{\rm p}$  is the dielectric permittivity of polymer. <sup>h</sup> Third term of the right-hand side of eqn (8) in the main text which is of the dielectric mismatch between solvent and polymer.

#### References

- 1. G. N. Kangovi and S. Lee, *Macromolecules*, 2017, **50**, 8678-8687.
- 2. Y. A. Budkov, N. N. Kalikin and A. L. Kolesnikov, *Eur. Phys. J. E*, 2017, **40**, 47.
- P. C. Hiemenz and T. P. Lodge, *Polymer Chemistry*, CRC Press, Boca Raton, FL, 2nd edn., 2007.
- 4. W.-K. Wong and E. F. Westrum, J. Chem. Thermodyn., 1971, **3**, 105-124.
- 5. W. M. Haynes, *CRC handbook of chemistry and physics*, CRC press, 2014.
- D. W. van Krevelen, Properties of Polymers: Their CorrelationWith Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier Science, Amsterdam, Netherlands, 4th edn, 2014, p. 331.