Electronic Supplementary Material (ESI) for Molecular Systems Design \& Engineering. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Assessing the effect of aromatic residues placement on α-helical peptide structure and nanofibril formation of 21-mer peptides

Armin Solemanifar, Tuan A. H. Nguyen, Bronwyn Laycock, Heather M. Shewan, Bogdan C. Donose, and Rhiannon C. G. Creasey

Figure S1. TEM Micrographs of L6, F6, F4, F4W2, and W6 prepared at 1 mM concentration.*

[^0]

Figure S2. Free energy landscape for full atomistic models of L6, F6, F4, F4W2, W6, and W2F4 measured up to $1.2 \mu \mathrm{~s}$ (first 200 ns of simulation omitted). Radius of gyration of backbone and RMSD of backbone versus average structure of each peptide over the simulation period used as X and Y axis. Representative models at local minimum energies are represented with their occurrence of simulation time. Purple, green, blue, and red, and orange colours indicate parts of the representative models that are α-helix, random coil, turn, and 3-10-helix, and β-sheet secondary structure. Bar legend for all free energy landscapes are the same shown at top left of the figure with $\mathrm{kJ} / \mathrm{mol}$ units.

Figure S3. RMSF results for MD simulation of all-atom models up to $1.2 \mu \mathrm{~s}$ (first 200 ns of simulation omitted) of each residue for L6, F6, F4, F4W2, and W6 peptides coloured blue, red, purple, green, and orange, respectively.

Figure $\mathrm{S} 4 . \mathrm{MOI}_{(z / \mathrm{X})}$ of three repeated MD simulations of peptide CG models from different initial peptide distribution in the simulation box.

Figure S5. Snapshot of largest CG cluster for W2F4 at 25μ s with Phe and Trp residues coloured yellow and green, respectively and different peptide chains presented in different colours.

Table S1. Moment of Inertia (MOI) along the principles axis of CG models (at $25 \mu \mathrm{~s}$) calculated for all designed peptides along with solvent accessible surface area (SASA) of them calculated at initial (after energy minimisation) and end of simulation (at $25 \mu \mathrm{~s}$). Results are average of three repeated MD simulations of peptide CG models from different initial peptide distribution in the simulation box.

Peptide	Run	MOI ($10^{2} \mathrm{amu} \AA^{2}$)			$\begin{aligned} & \mathrm{MOI} \\ & (\mathrm{z} / \mathrm{x}) \end{aligned}$
		X	Y	Z	
	1	538	2910	3033	5.63
	2	506	3292	3332	6.59
	3	471	3081	3265	6.94
	1	636	3378	3535	5.56
	2	605	3007	3151	5.21
	3	656	3115	3304	5.03
	1	656	3273	3400	5.18
	2	12534	86237	93942	7.50
	3	659	3773	3878	5.88
	1	653	3700	3768	5.76
	2	780	3279	3544	4.55
	3	766	3688	3757	4.91
	1	4172	6981	9156	2.19
	2	859	3802	3953	4.60
	3	837	3725	3987	4.76
	1	808	3523	3614	4.47
	2	728	3547	3681	5.05
	3	733	3910	3966	5.41

Table S2. Secondary structure prediction of L6, F4, F6, F4W2, and W6 peptides at $1 \mathrm{mM}, 100 \mu \mathrm{M}, 10$ $\mu \mathrm{M}$, and $1 \mu \mathrm{M}$ concentrations using BeStSel method. ${ }^{1,2}$ Each class of secondary structure is defined by BeStSel. Total α-helical structure is combination of Helix 1 and Helix 2. Total antiparallel is combination of Anti 1, Anti 2, and Anti 3 while total β-sheet is combination of parallel and antiparallel.

Peptide	Concentration (mM)	Secondary Structure Prediction (\%)										
		Helix1	Helix2	Anti1	Anti2	Anti3	Antiparallel (Total)	Parallel	Beta Sheet (Total)	Turn		Others
	1	69.0	19.7	0.0	0.0	0.0	0.0	0.0	0.0	6.5	88.7	4.7
	0.1	58.1	18.5	0.0	0.0	0.0	0.0	0.0	0.0	7.8	76.6	15.6
	0.01	54.9	18.9	0.0	0.0	0.0	0.0	0.0	0.0	9.6	73.8	16.6
	0.001	38.2	15.1	0.0	0.0	2.5	2.5	3.9	6.4	8.6	53.3	31.7
	1	51.2	24.6	0.0	2.0	0.0	2.0	0.0	2.0	8.7	75.8	13.6
	0.1	28.1	12.3	0.8	7.9	0.0	8.8	0.0	8.8	12.6	40.4	38.3
	0.01	20.1	12.2	2.4	8.0	0.0	10.4	0.0	10.4	12.7	32.2	44.7
	0.001	9.1	4.7	5.4	14.7	11.2	31.3	0.0	31.3	13.4	13.9	41.4
	1	57.6	28.6	5.2	0.0	0.0	5.2	7.5	12.7	1.0	86.3	0.0
	0.1	40.8	26.4	0.0	0.0	0.0	0.0	0.0	0.0	7.9	67.2	24.9
	0.01	15.8	16.0	3.1	1.5	3.0	7.6	0.0	7.6	13.4	31.8	47.3
	0.001	17.8	13.4	4.2	5.4	5.6	15.2	0.0	15.2	13.4	31.3	40.1
	1	46.9	15.7	0.0	6.7	0.0	6.7	0.0	6.7	9.7	62.6	21.0
	0.1	13.0	9.5	2.9	10.6	5.8	19.4	0.0	19.4	13.3	22.5	44.7
	0.01	2.8	4.3	0.0	15.3	14.7	30.0	0.0	30.0	16.3	7.1	46.6
	0.001	1.9	2.4	3.8	13.4	14.2	31.4	0.0	31.4	16.7	4.4	47.6
	1	15.9	8.3	0.0	19.9	11.8	31.7	0.0	31.7	6.8	24.2	37.2
	0.1	25.6	4.7	4.7	14.1	3.0	17.1	0.0	17.1	12.8	30.4	39.7
	0.01	15.1	3.6	0.0	19.9	10.6	30.6	0.0	30.6	11.3	18.7	39.5
	0.001	0.0	1.7	2.9	20.7	17.7	41.4	0.0	41.4	11.2	1.7	45.7

Table S3. Fibre diameter calculation for L6, F4, F6, F4W2, and W6 peptides based on AFM images. It should be noted these measurements are from the images in Figure 1 of the manuscript. These are representative images only.

Fibre diameter	$L 6(p m)$	$F 4(p m)$	$F 6(p m)$	$F 4 W 2(p m)$	$W 6(p m)$
	1555	2977	1013	3861	4216
	1487	3400	847	5526	3866
	1040	2253	1317	4471	5161
	1678	2504	848	4900	6141
	938	2415	940	5289	6973
	1885	3326	1200	4910	6504
	1828	2439	1324	5834	4130
	1331	2034	1038	7109	5882
	1552	1759	1003	6405	5030
Average:	$\mathbf{1 4 3 4 . 1}$	$\mathbf{2 6 1 2 . 7}$	$\mathbf{1 0 7 1 . 2}$	$\mathbf{5 4 7 9 . 1}$	$\mathbf{5 4 6 7 . 7}$
Standard	335.2	547	176.3	1040.4	1148.8
Deviation:					

References:

1 A. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Refregiers, et al., Proc Natl Acad Sci U S A, 2015, 112, E3095-103.
2 A. Micsonai, F. Wien, E. Bulyaki, J. Kun, E. Moussong, Y. H. Lee, et al., Nucleic Acids Res, 2018, 46, W315-W22.

Appendix: High performance liquid chromatography (HPLC) and mass spectroscopy (MS) data for each peptide

HPLC data for L6:

Pump A : 0.065% trifluoroacetic in 100% water (v / v)
Pump B : 0.05% trifluoroacetic in 100% acetonitrile (v / v)
Total Flow: $1 \mathrm{ml} / \mathrm{min}$
<<LC Time Program>>

<<LC Time Program>>			
Time	Module	Command	Value
0.01	Pumps	Pump B Conc.	35
25.00	Pumps	Pump B Conc.	95
31.00	Pumps	Pump B Conc.	95
31.01	Pumps	Pump B Conc.	35
40.00	Pumps	Pump B Conc.	35
40.01	Controller		
<column Performance>>			
Detactor A>			

Column : AlltimaTM C18 $4.6 \times 250 \mathrm{~mm}$
<Chromatogram>
mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Area\%
1	16.061	14921	1926	0.359
2	16.560	3951208	269901	95.032
3	17.322	13923	1660	0.335
4	18.366	156392	18448	3.761
5	18.758	21309	3041	0.513
Total		4157753	294976	100.000

MS data for L6:
Positive
Intensity

HPLC data for $\mathbf{F 6}$

MS data for $\mathbf{F 6}$:

HPLC data for W6:

MS data for W6:

HPLC data for F4W2:

Column	4.6 mmx 250 mm , Agela		
Solvent A	0.1\% trifluoroacetic in 100\% acetonitrile		
Solvent B	0.1% trifluoroacetic in 100% water		
Gradient		A	B
	0.01 min	43\%	57\%
	25 min	68\%	32\%
	25.1 min	100\%	0\%
	30 min	STOP	
Flow Rate	$1.0 \mathrm{ml} / \mathrm{min}$		
Wavelength	214 nm		
Volume	10ul		

MS data for F4W2:

HPLC data for F4:

MS data for $\mathbf{F 4}$:

[^0]: * The TEM samples were prepared and imaged as follows: 10 mM peptides solutions were prepared by dissolving lyophilised peptides in MilliQ water and diluting to 2 mM . Then, the 2 mM peptide solutions were mixed with required sodium bicarbonate (and left at room conditions for 2 hours to reach pH 7.4) to final concentration of 1 mM . TEM samples were prepared upon completion of 2-hour titration period by deposition of $4 \mu \mathrm{~L}$ of titrated peptide on 200 -mesh carbon-coated copper grid and left for 90 s . The excess liquid was wicked away and $4 \mu \mathrm{~L}$ of aqueous 1% uranyl acetate statin solution was added and briefly mixed on the grid. After 90 s , the excess was removed, and grids were air-dried. The TEM images were collected using Hitachi-H7700 transmission electron microscope.

