ELECTRONIC SUPPORTING INFORMATION

Unravelling the mechanism of water sensing by the Mg²⁺ dihydroxyterephthalate MOF (AEMOF-1')

Eleutheria Papazoi,^a Antigoni Douvali,^a Stavros A. Diamantis,^b Giannis S. Papaefstathiou,^c Svetlana V. Eliseeva,^d Stéphane Petoud,^d Antonios G. Hatzidimitriou,^b Theodore Lazarides^{*b} and Manolis J. Manos^{*a}

- a. Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece; email: emanos@cc.uoi.gr
- ^{b.} Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; email: tlazarides@chem.auth.gr
- ^{c.} Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece.
- d. Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France

Fig. S1. IR spectra of AEMOF-1 hydrated and compound 1.

Fig. S2. TGA data for compounds 1 and 1'.

The TGA data for compound **1** reveal weight losses starting from ~ 100° C and ending at ~ $600 \,^{\circ}$ C. These weight losses are attributed to the removal of water molecules and the decomposition of the H₂dhtp²⁻ ligands. The calculated and found total weight loss for **1**, considering the removal of six water molecules and one H₂dhtp²⁻ ligand (with the TGA residue being MgO), are 87.7 and 87.9 % respectively.

The TGA data for compound 1' indicate continuous weight losses starting from ~ 40 0 C and ending at ~ 600 0 C. The calculated and found total weight loss for 1', considering the removal of two coordinating water molecules and one H₂dhtp²⁻ ligand (with the TGA residue being MgO), are 84.3 and 85.1 % respectively.

Fig. S3. IR spectra of AEMOF-1' and 1'.

Fig. S4. IR spectra of 1' and 3.

Scheme S1. The four level ESIPT photo-cycle involved in the photophysics of AEMOFs. GSIPT stands for ground state intramolecular proton transfer.

Fig. S5. Representation of the strong π - π interactions in compound **3**.

$D^a - H \cdots A^b$	D ^a ···A ^b	Н…А₽	$< D^a H A^b$
O2T-H1T···O3#1	2.609	1.77	170
O2T-H2T···O2#2	2.854	2.05	157
O3T'-H3T'···O6#3	3.018	2.18	175
O1T-H1T1···O4#1	2.704	1.87	179
O1T–H1T2···O5#4	2.737	1.91	176
O3T'-H4T'…O1W#3	2.787	2.07	164
O1W–H1W…O3#5	2.732	1.89	179
O1W–H2W…O3T'#6	3.101	2.32	154
O5–H1O5…O2	2.528	1.73	152
O6–H1O6…O4	2.491	1.74	146
	1	I	1

Table S1. Dimensions of the unique hydrogen bonds (distances in Å and angles in °) for **1**.

Symmetry transformations used to generate equivalent atoms:

(1) -1+x, y, -1+z; (2) -x, -0.5+y, -z; (3) 1-x, -0.5+y, -z; (4) x, y, -1+z; (5) 1-x,

0.5+y, 1-z; (6) x, 0.5-y, z

^aD= donor atom

^bA= acceptor atom