# *In situ* non-invasive Raman spectroscopic characterisation of succinic acid polymorphism during segmented flow crystallisation

Anuradha R. Pallipurath,<sup>1†</sup> Pierre-Baptiste Flandrin,<sup>1</sup> Lois E. Wayment,<sup>1, 2, 3</sup> Chick C. Wilson<sup>1,2</sup> and Karen Robertson<sup>1‡\*</sup>

- 1. Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, UK
- 2. CMAC Future Manufacturing Hub, University of Bath, Claverton Down, Bath BA2 7AY, UK
- 3. Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
- \* Email: Karen.Robertson@nottingham.ac.uk

† Present Address: Department Chemistry, CMAC Future Manufacturing Hub, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT

<sup>‡</sup> Present Address: Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD

## **Supporting information**

## Contents

| 1. | Scale_all algorithm                          | 3 |
|----|----------------------------------------------|---|
| 2. | 2D plots of Raman spectra for slurry of β-SA | 4 |
| 3. | Offline analysis of SA produced in the KRAIC | 5 |
| 4. | 1D plots of Raman data                       | 5 |
| 5. | Tentative assignments of Raman peaks         | 6 |

#### 1. Scale\_all algorithm



**Figure S1:** Time-resolved Raman spectra of succinic acid form  $\beta$  high density slurry collected after segmentation in the KRAIC set-up. The 'scale\_all' algorithm exaggerates the effect of the background thereby enabling distinction between regions of high and low Raman density from solids. The 'scale\_individual' algorithm improves the S/N ratio of the features from the solids against the background.

**'Scale\_all'**: Each spectra in the time-dependent data collection is treated simultaneously. Every data point (intensity) in a spectrum is subtracted by the lowest intensity across all of the spectra and divide by the difference in the maximum and minimum intensity across all of the spectra.

$$I_{Sa} = \frac{I - I_{\min}\_all}{I_{\max}\_all - I_{\min}\_all} \quad eq (1)$$



#### 2. 2D plots of Raman spectra for slurry of β-SA

**Figure S2:** Time-dependent Raman spectra collected from pre-prepared high density slurry of succinic acid form  $\beta$ . In the region of (a) 500 – 700 cm<sup>-1</sup> (b) 780 – 1120 cm<sup>-1</sup> (c) 1400 – 1850 cm<sup>-1</sup>. The regions of interest were scaled individually, to enhance the Raman peaks from the solids flowing through. Overlayed spectra are  $\beta$ -SA (red) and  $\alpha$ -SA (grey).

1.1 (a) 1.0 As received 0.9 0.8 Form **\beta** SUCACB03 0.7 è Grown in KRAIC Form a SUCACB07 0.3-0.2 Grown from melt 0.1 0.0 22 14 16 20 32 34 24 20 [°]

(b)

36

3. Offline analysis of SA produced in the KRAIC

**Figure S3:** (a) Microscope image of succinic acid (SA) crystallised from KRAIC, (b) Powder X-ray diffraction of the polymorphic forms of SA as received (form  $\beta$ ), grown from KRAIC (form  $\beta$ , with small  $\alpha$  impurities), form  $\alpha$  grown from melt and simulated patterns of both forms from crystal structures deposited in the Cambridge Structural Database (CSD) – REF code: SUCACB03 and SUCACB07.



**Figure S4:** 1d plots of PCM FI and FII slurry before background subtraction. The major intensities are from the FEP tubing.

### 5. Tentative assignments of Raman peaks

**Table S1:** Tentative assignments for fluro ethylene propylene reactor and reactor with cyclohexane.

| FEP      | FEP+solvent | Tentative analysis                        |  |  |
|----------|-------------|-------------------------------------------|--|--|
| 208.4961 |             |                                           |  |  |
| 239.2048 |             | C-C stretches                             |  |  |
| 295.2031 | 293.3967156 |                                           |  |  |
| 387.3293 | 387.3292999 |                                           |  |  |
| 19.8444  | 418.0380294 |                                           |  |  |
| 580.6137 |             | C-C deformations                          |  |  |
| 602.2904 |             |                                           |  |  |
| 643.8375 |             |                                           |  |  |
|          | 692.6101988 |                                           |  |  |
| 734.1573 | 734.1573034 | C-F deformation                           |  |  |
| 752.2213 | 750.414866  |                                           |  |  |
| 940.0864 |             | C C C C Symmetric vibrations              |  |  |
| 1109.888 |             | C-C-C-C Symmetric Vibrations              |  |  |
| 1164.08  | 1151.434745 | C-C-C stratches                           |  |  |
|          | 1191.175454 | C-C-C stretches                           |  |  |
| 1218.271 |             | C-E stretching                            |  |  |
| 1247.174 |             |                                           |  |  |
| 1299.559 | 1299.559205 | CH <sub>2</sub> -CH <sub>2</sub> twisting |  |  |
|          | 1326.655143 |                                           |  |  |
| 1348.332 | 1351.944685 |                                           |  |  |
| 1382.653 | 1382.653414 |                                           |  |  |
|          | 1435.038894 |                                           |  |  |
| 1545.229 | 1543.422645 | CH <sub>2</sub> F deformation             |  |  |
|          | 1604.840104 |                                           |  |  |
|          | 1850.509939 |                                           |  |  |
|          | 2052.826275 |                                           |  |  |
|          | 2060.051858 |                                           |  |  |
|          | 2164.822818 |                                           |  |  |
|          | 2240.691443 |                                           |  |  |
|          | 2331.011236 |                                           |  |  |
|          | 2370.751945 |                                           |  |  |
| 2601.971 |             |                                           |  |  |
| 2876.543 | 2880.155575 | C-H stretching                            |  |  |
|          | 2986.73293  |                                           |  |  |

 Table S2: Tentative assignments for succinic acid polymorphs

| α-SA     | β-SA     | Tentative analysis                   |
|----------|----------|--------------------------------------|
|          | 83.8548  |                                      |
| 94.69317 | 94.69317 |                                      |
|          | 125.4019 | Rhonon modos                         |
| 130.8211 | 136.2403 | Filoholi modes                       |
| 148.885  |          |                                      |
| 175.981  | 161.5298 |                                      |
| 212.1089 |          |                                      |
|          | 266.3008 | C-C stratches                        |
|          | 304.2351 | C-C stretches                        |
| 320.4927 | 320.4927 |                                      |
| 392.7485 | 387.3293 |                                      |
|          | 457.7787 | C-C deformation in aliphatic carbons |
| 549.9049 |          |                                      |
| 569.7753 |          | C-O out-of-pape deformation          |
| 582.4201 | 582.4201 |                                      |
| 631.1927 |          |                                      |
|          | 663.7079 |                                      |
| 687.191  | 685.3846 | out-of-plane bending of H-bonded     |
|          | 703 4486 | OH                                   |
|          | 744 2000 |                                      |
| 047 0545 | /14.2869 |                                      |
| 817.2515 | 007 704  |                                      |
| 900.3457 | 887.701  |                                      |
| 940.0864 | 940.0864 | Out-of-plane C-O deformations        |
|          | 963.5696 |                                      |
|          | 983.4399 |                                      |
| 1012.342 |          |                                      |
| 1032.213 | 1035.825 | monomeric C-O stretching             |
| 1088.211 | 1086.404 |                                      |
| 1165.886 | 1160.467 |                                      |
|          | 1198.401 |                                      |
| 1216.465 |          |                                      |
| 1238.142 | 1232.723 | C-H deformations                     |
|          | 1247.174 |                                      |
|          | 1265.238 |                                      |
|          | 1277.882 |                                      |
| 1297.753 | 1295.946 |                                      |

|                   | 1323.042 |                             |  |  |
|-------------------|----------|-----------------------------|--|--|
| 1382.653          | 1371.815 |                             |  |  |
| 1400.717          | 1400.717 |                             |  |  |
| 1413.362          | 1420.588 | C-OOH combination band      |  |  |
| 1435.039          |          |                             |  |  |
| 1449.49           |          |                             |  |  |
| 1472.973          |          | CH <sub>2</sub> deformation |  |  |
| 1548.842          |          |                             |  |  |
| 1650              | 1655.419 |                             |  |  |
|                   | 1687.934 | C=O stretching              |  |  |
|                   | 1725.869 |                             |  |  |
|                   | 1763.803 |                             |  |  |
|                   | 1799.931 |                             |  |  |
| 1816.188          |          |                             |  |  |
| 1848.704          |          |                             |  |  |
| 1875.799          |          |                             |  |  |
| 1908.315          |          |                             |  |  |
| 1931.798          |          |                             |  |  |
| 2329.205          |          |                             |  |  |
| 2553.198          |          |                             |  |  |
| 2591.132          | 2576.681 | H-bonded COOH stretches     |  |  |
|                   | 2645.324 |                             |  |  |
|                   | 2782.61  |                             |  |  |
| 2851.253          | 2865.704 |                             |  |  |
| 2865.704 2885.575 |          | Aliphatic C-H stretching    |  |  |
|                   | 2910.864 |                             |  |  |
| 2934.347          | 2928.928 |                             |  |  |
| 2946.992          | 2948.799 | Aromatic C II stratships    |  |  |
| 2966.863 2968.669 |          | Aromatic C-H stretching     |  |  |
|                   |          |                             |  |  |
| 3008.41           |          |                             |  |  |

PCM FI PCM FII Tentative analysis 89.7 128.0355 118.774 137.2969 Phonon modes 158.9069 217.5628 205.2142 328.7001 331.7873 365.7459 393.5303 396.6174 C-C stretching 415.1403 421.3146 467.6219 452.1861 501.5805 510.8419 603.4564 606.5436 631.2408 628.1536 out-of-plane bending H-bonded OH 649.7637 652.8508 686.8095 711.5066 711.5066 out-of-plane N-H deformation in Hbonded secondary amides 739.291 797.9468 801.034 N-H wagging in secondary amines and C-H out of plane deformation in 834.9926 838.0798 ortho substituted aromatics 858.3 862.777 967.74 970.8272 out-of-plane C=O deformation 1023.309 1023.309 1041.832 1100.487 1109.749 C-C-C stretches 1168.8 1171.492 1220.886 CH<sub>2</sub> deformations + Amide III band 1248.671 1237.5 1261.019 Amide III band 1279.542 1282.629 1324.5 1332.024 C-N stretching amide III 1372.157 1378.331 C-O O-H combination bands 1430.812 1449.335 1455.51 N-H bonding 1507.991 N-H deformation and C-N stretching amide II 1514.165 1511.078 1560.473 1560.473 C=C stretches 1578.996

Table S3: Tentative assignments for paracetamol polymorphs

| 1610.7   | 1612.954 |                                                              |   |  |
|----------|----------|--------------------------------------------------------------|---|--|
| 1618.5   | 1628.39  | C-O stratches amide l                                        | ] |  |
| 1648.8   | 1650     | C=O stretches affide I                                       |   |  |
|          | 2733.589 | carboxylic acid dimer                                        |   |  |
|          | 2841.64  |                                                              | ] |  |
|          | 2884.86  |                                                              |   |  |
| 2931.9   | 2937.341 | aliphatic C-H stretches                                      |   |  |
|          | 2983.648 |                                                              |   |  |
| 3014.52  | 3014.52  |                                                              |   |  |
| 3055.2   | 3060.827 |                                                              |   |  |
| 3066.3   | 3079.35  | 79.35<br>aromatic C-H stretches78.139<br>05.923O-H stretches |   |  |
| 3110.222 | 3104.047 |                                                              |   |  |
|          | 3178.139 |                                                              |   |  |
|          | 3205.923 |                                                              |   |  |