Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Crystal structure and thermoresponsive luminescence of a 9,10-bis(phenylethynyl)anthracene-based cyclophane

Yoshimitsu Sagara,* Kiyonori Takahashi, Takayoshi Nakamura, Nobuyuki Tamaoki E-mail: sagara@es.hokudai.ac.jp

Table of Contents

Synthesis of compound 1	S2
Crystallographic data	S3
Atom numbering for the crystallographically independent structure	S4
Hirshfeld surface analysis for 1	S5
Simulated XRD pattern of 1 in the Cr ₁ phase	S6
Absorption and emission spectra of 1 in THF	S6
¹ H NMR and ¹³ C NMR spectra of 1	S7
References	S7

Synthesis of cyclophane 1

Schemes S1 shows the synthetic route used to prepare cyclophane **1**. Compound **4** and 9,10-bis(4-hydroxyphenylethynyl)anthracene were prepared according to the reported procedures.^{S1,S2}

Conditions: 9,10-bis(4-hydroxyphenylethynyl)anthracene, K₂CO₃, DMF, 70 °C, 36 h.

Cyclophane 1. A solution of compound **4** (449 mg, 0.618 mmol) and 9,10-bis(4-hydroxyphenylethynyl)anthracene (254 mg, 0.618 mmol) in DMF (20 mL) was added to a suspension of K_2CO_3 (1.71 g, 12.4 mmol) in DMF (300 mL) dropwise at 70 °C over 12 h under vigorous stirring. After further stirring for 24 h at 70 °C, the reaction suspension was cooled and most of the DMF was evaporated in vacuo. The crude product was dissolved in chloroform and washed with saturated aq. NH₄Cl solution (3 × 100 mL), followed by saturated aq. NaCl solution, the organic layer was dried over MgSO₄, filtered, and the solvent was evaporated. The crude product was purified by flash column chromatography on silica gel (eluent: dichloromethane/acetone = 5:1) and recycling GPC (eluent: chloroform) to afford cyclophane **1** (153 mg, 0.157 mmol) as an orange powder in 25 % yield.

¹H NMR (400 MHz, CDCl₃): δ = 3.56–3.66 (m, 20H), 3.70–3.74 (m, 8H), 3.86–3.91 (m, 8H), 4.30–4.32 (m, 4H), 6.34 (d, *J* = 7.2 Hz, 2H), 6.95 (t, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 9.2 Hz, 4H), 7.46–7.51 (m, 6H), 7.69 (d, *J* = 8.8 Hz, 4H), 8.55–8.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 67.27, 68.06, 69.79, 70.09, 70.62, 70.82, 70.84, 70.89, 71.19, 85.74, 102.63, 105.16, 114.29, 115.58, 115.91, 118.42, 124.85, 126.37, 126.69, 127.26, 131.93, 133.21, 153.99, 159.54. MS (MALDI-TOF): m/z: 974.73 (calcd. [M] ⁺ = 974.42). Elemental analysis (%) calcd. for C₆₀H₆₂O₁₂: C 73.90, H 6.41, N 0.00; found: C 73.75, H 6.36, N 0.30.

Crystallographic data

	Cyclophane 1
Temperature / K	273
Crystal size / mm ³	$0.600 \times 0.400 \times 0.020$
Chemical formula	$C_{60}H_{62}O_{12}$
Formula weight	975.09
Crystal System	Triclinic
Space group	<i>P</i> -1
<i>a</i> , Å	12.0972(7)
<i>b</i> , Å	14.7659(8)
<i>c</i> , Å	15.4910(9)
α , deg	101.433(2)
β , deg	107.441(2)
γ, deg	94.2990(10)
<i>V</i> , Å ³	2560.6(3)
Ζ	2
$D_{calc}, \operatorname{g-cm}^{-3}$	1.265
μ ,(Cu K α) mm ⁻¹	0.087
Reflections measured	24934
Independent reflections	5596
Reflections used	5596
R_I^{a}	0.0660
$R_w(F^2)^{b}$	0.1642
GOF	1.099

 Table S1.
 Crystal Data, Data Collection, and Reduction Parameter.

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|}$ and ${}^{b}R_{w} = (\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2})^{1/2}$.

Atom numbering for the crystallographically independent molecule in the crystal

Figure S1. Crystallographically independent molecular structure with atom numbering.

Hirshfeld surface analysis for 1

Hirshfeld surface analysis was applied to the crystal structure of cyclophane 1 (Figure S2). Hirshfeld surface is depicted as d_{norm} surface. Red and blue surface in d_{norm} expression correspond to the surface that is smaller and larger than the sum of the van der Waals radii between the inner and outer nearest atoms from the surface, while white one is same as van der Waals radii with the same manner to red and blue ones. Relatively strong interactions were observed around phenylene rings and oxygen atom bonded to phenylene ring. This interaction corresponded to C-H•••O interaction between phenylene ring and oxygen atom in alkoxy chain. Percentage contribution of the type of interatomic contact between inter-molecules was summarized in Figure S2b. 58.3% contact is between hydrogen atoms. The C•••C contact is contributed as 2.5%, corresponding to $\pi^{\bullet\bullet\bullet\pi}$ interactions.

Figure S2. Hirshfeld surface analysis of cyclophane 1. (a) Hirshfeld surface for crystallographically independent molecule depicted as d_{norm} expression. The surfaces were shown from the different views (left and right). (b) Percentage contribution of the types of interatomic contact between inter- and outer-molecules.

Simulated XRD pattern of 1 in the Cr1 phase

Figure S3. Simulated (red) and measured (black) XRD patterns of 1 in the Cr1 phase.

Absorption and emission spectra of 1 in THF

Figure S4. (a) Absorption and (b) photoluminescence spectra of cyclophane 1 in THF (solid line) and CHCl₃ (dotted line) ($c = 1.0 \times 10^{-5}$ M). All spectra were recorded at r.t. The excitation wavelength for the photoluminescence spectra was 400 nm.

¹H NMR and ¹³C NMR spectra of 1

Figure S5. (a) ¹H NMR and (b) ¹³C NMR spectra of cyclophane 1 in CDCl₃ at r.t.

References

- S1. Y. Sagara, A. Seki, Y. Kim and N. Tamaoki, J. Mater. Chem. C, 2018, 6, 8453-8459.
- S2. Y. Sagara, Y. C. Simon, N. Tamaoki and C. Weder, Chem. Commun., 2016, 52, 5694–5697.