Supporting Information

Table ST. TIOW Cylonnell	y labeling conditions.	
Detection	Primary label (dilution)	Secondary label (dilution)
HA tag (displaying)	Mouse anti-HA (1:500)	Goat anti-mouse Alexa Fluor 488 (1:500)
c-Myc tag (full length)	Chicken anti-CMYC (1:500)	Goat anti-chicken Alexa Fluor 647 (1:500)

Table S1: Flow cytometry labeling conditions.

Table S2: Relative readthrough efficiency error as a percentage of the RRE magnitude for three reporter systems (yeast display, RFP-GFP dual-fluorescent protein reporter, sfGFP single-fluorescent protein reporter).

	Detection Method	LeuOmeRS + OmeY	LeuOmeRS + AzF	TyrOmeRS + OmeY	TyrOmeRS + AzF
Yeast Display	Flow Cytometry	13%	15%	17%	9.9%
RFP/GFP	Flow Cytometry	5.6%	5.3%	19%	19%
GFP	Flow Cytometry	10%	2.3%	16%	15%
RFP/GFP	Plate Reader	20%	40%	20%	21%
GFP	Plate Reader	19%	140%	22%	19%

Table S3: Relative readthrough efficiency error as a percentage of the RRE magnitude for various dual-fluorescent protein reporters.

Detecti	on Method Leu	OmeRS + OmeY	LeuOmeRS + AzF	TyrOmeRS+ OmeY	TyrOmeRS + AzF
	tomotry E 60/				-
RFP/GFP Flow Cy	10metry 5.6%)	5.3%	19%	19%
BFP/GFP Flow Cy	tometry 15%		13%	7.6%	7.5%
GFP/BFP Flow Cy	tometry 43%		40%	32%	28%
RFP/GFP Plate Re	eader 20%		40%	20%	21%
BFP/GFP Plate Re	eader 21%		24%	23%	16%
GFP/BFP Plate Re	eader 37%		210%	76%	73%

Flow Cytometry Data Yeast Display RFP-GFP GFP N Mean N Mean 95% CI Grouping Ν Mean 95% CI Grouping 95% CI Grouping none 1387.4 (1245.0, 1529.9) 3 989.7 (899.0, 1080.3) АВ 3 в LeuOmeRS OmeY 3 1482.4 (1259.5, 1705.2) в 3 1057.4 (1007.5, 1107.2) А AzF Wild-type 3 1478.7 (1212.4, 1744.9) В 3 1065.03 (1030.13, 1099.94) А none 3 3 1490.1 (1399.0, 1581.2) В 935 (829.8, 1040.2) ΑB TyrOmeRS OmeY 3 1455 (1222.8, 1687.3) В 3 1000 (984.49, 1015.51) ΑB N-terminal Detection AzF 3 1561.3 3 1131.3 (1421.1, 1701.6) В (1001.2, 1261.5) А none 3 1957.8 (1858.6, 2057.0) A B 3 769.7 (682.7, 856.7) В LeuOmeRS OmeY (1807.8, 2288.2) 2048 3 1073.4 3 А (952.7, 1194.1) А construct AzF 1980.1 3 3 905.6 (1586.1, 2374.1) AΒ (838.3, 973.0) A B none LAG (1910.8 (1786.5, 2035.0) 3 736.3 3 ΑB (659.3, 813.4) в TyrOmeRS OmeY 3 1999 (1259, 2738) 3 947.4 (809.5, 1085.3) A B A B AzF 3 2000.4 (1602.3, 2398.5) АB 3 1043.4 (836.9, 1249.9) AВ none 3 37313 3 3 26298 (21618, 30979) (33179, 41448) А 6130 (5117, 7144) ΑB А LeuOmeRS OmeY 3 35888 3 6387.7 3 23944 (29681, 42094) А (6234.1, 6541.4) А (20320, 27568) А AzF Wild-type 3 33012 (29357, 36667) 3 6567 (5895, 7240) 3 25777 (24503, 27051) A А none 3 3 32599 (30400, 34798) 3 5961 (5074, 6848) AВ 27279 (20285, 34272) A А TyrOmeRS OmeY 3 34140 (29721, 38560) А 3 6283 (5866.1, 6699.9) А 3 22298 (15125, 29471) Δ C-terminal Detection AzF 3 3 3 34697 (31573, 37821) A 6708 (5759, 7657) A 26485 (18567, 34404) А none 286.7 3 3 889.3 3 (239.4, 334.0) 81.63 (75.97, 87.30) Е (711.2, 1067.5) D LeuOmeRS OmeY 3 3 3 16375 (13417, 19333) в 4164.7 (3894.5, 4435.0) вс 5439 (4317, 6561) в construct AzF 3 1051.3 с 3 442.67 3 989 (794.6, 1308.1) (434.91, 450.42) DE (957.87, 1020.13) D none TAG 3 364.7 (337.11. 392.29) 3 132.37 3 1235.7 (999.6, 1471.8) (98.69, 166.05) E D TyrOmeRS OmeY 3 5269.3 3 3 2782 (4844.2, 5694.4) D 2398 (1346, 3450) CDE (2180, 3384) с AzF 3 7211 (6701, 7722) Е 3 2742 (1698, 3785) сD 3 3176 (2535, 3818) с *Means that do not share a letter are statistically different

Table S4: One-way ANOVA with groupings via the Games-Howell method to evaluate the abilities of yeast display, RFP-GFP, and sfGFP reporters to discriminate between ncAA incorporation events of varying efficiencies (and wild-type controls) via flow cytometer.

Table S5: One-way ANOVA with groupings via the Games-Howell method to evaluate the abilities of RFP-GFP, and sfGFP reporters to discriminate between ncAA incorporation events of varying efficiencies (and wild-type controls) via microplate reader.

			Microplate Reader Data												
						RFP-GFP						GFP			
				Ν	Mean	95% CI	Gr	oupi	ng	Ν	Mean	95% CI	Gro	upir	ng
		S	none	3	620515	(495173, 745857)	А	в							
		euOmeR	OmeY	3	641626	(540257, 742996)	А								
	-type	Li,	AzF	3	599362	(572771, 625954)	А	в							
	Wild	S	none	3	604032	(493554, 714509)	А	в							
ion		yrOmeR	OmeY	3	551924	(465708, 638139)	А	в							
Detect		Г	AzF	3	562679	(459852, 665507)	А	в							
-termina		S	none	3	448974	(407652, 490296)	А	в							
ż		euOmeR	OmeY	3	536657	(499394, 573920)	А	в							
	onstruct		AzF	3	416156	(368893, 463418)		в							
	TAG co	S	none	3	408299	(342151, 474448)		в							
		lyrOmeR	OmeY	3	456924	(399847, 514000)		в							
		F	AzF	3	510425	(440547, 580303)	А	в							
		ss	none	3	12391834	(9043994, 15739675)	А			3	24060972	(18929613, 29192331)	А		
		euOme	OmeY	3	11578707	(8755388, 14402026)	А			3	21723180	(15872683, 27573676)	А		
	l-type		AzF	3	11362153	(10072694, 12651611)	А			3	22826754	(19084945, 26568563)	А		
	Wile	S	none	3	11068101	(9600508, 12535694)	А			3	23105251	(17436634, 28773869)	А		
ion		lyrOmeF	OmeY	3	9827196	(8133696, 11520696)	А			3	19059034	(14429691, 23688377)	А		
I Detect		-	AzF	3	10088130	(7772110, 12404150)	А			3	20887844	(14552549, 27223139)	А		
-termina		ßS	none	3	60903	(-584984, 706790)			с	3	200056	(-472961, 873073)			с
C		enOme	OmeY	3	7974976	(6850592, 9099361)	А			3	4018956	(2379751, 5658161)		в	
	onstruct		AzF	3	822572	(116018, 1529127)			с	3	218640	(-574756, 1012035)			с
	TAG c	ßS	none	3	539344	(-528534, 1607221)			с	3	236415	(-853429, 1326258)			с
		TyrOme	OmeY	3	4632104	(3744436, 5519773)		в		3	1852495	(589714, 3115277)		В	с
			AzF	3	5688804	(4815829, 6561779)	А	в		3	2348903	(1061853, 3635953)		в	с
1					*Me	ans that do not share a l	ette	r are	sta	tistic	ally different				

Table S6: One-way ANOVA with groupings via the Games-Howell method to evaluate the abilities of RFP-GFP, BFP-GFP, and GFP-BFP reporters to discriminate between ncAA incorporation events of varying efficiencies (and wild-type controls) via flow cytometry.

						REP-GEP						Flow Cytometry L	pata:						—		GEP-BEP	
				N	Mean	95% Cl		Group	oing	Ν	Mean	95% CI			G	roupin	g		N	Mean	95% CI	Grouping
			none	3	989.7	(899.0, 1080.3)	А	в	0	3	8453	(7561, 9344)				D	0		3	23632	(16754, 30511)	A
		uOmeR	OmeY	3	1057.4	(1007.5, 1107.2)	А			3	9834	(9239, 10430)			с	D			3	24920	(16531, 33310)	A
	type	Le	AzF	3	1065.03	(1030.13, 1099.94)	А			3	10832	(9780, 11883)		в	с	D			3	26129	(19447, 32811)	А
	wild	s	none	3	935	(829.8, 1040.2)	А	в		3	9321	(8129, 10513)				D			3	23859	(16159, 31558)	А
u		yrOmeR	OmeY	3	1000	(984.49, 1015.51)	А	в		3	9838	(9414.9, 10261.1)			с	D			3	24344	(15180, 33508)	A
I Detecti		г	AzF	3	1131.3	(1001.2, 1261.5)	А			3	11855	(10687, 13022)	A	в	с				3	26838	(14979, 38697)	A
-termina		ss	none	3	769.7	(682.7, 856.7)		В		3	7928	(7164, 8692)				D			3	13485	(4711, 22259)	А
ż		euOme	OmeY	3	1073.4	(952.7, 1194.1)	А			3	11503	(8443, 14564)	A	в	с	D			3	21830	(8365, 35295)	А
	onstruct	_	AzF	3	905.6	(838.3, 973.0)	А	В		3	11293	(9429, 13158)	A	в	с	D			3	15487	(5238, 25735)	A
	TAG c	RS	none	3	736.3	(659.3, 813.4)		В		3	9239	(7961, 10518)				D			3	14220	(11462, 16977)	A
		TyrOme	OmeY	3	947.4	(809.5, 1085.3)	А	В		3	12459	(11870, 13048)	Α	в					3	17990	(11661, 24319)	A
			AzF	3	1043.4	(836.9, 1249.9)	А	В		3	13509	(12608, 14410)	А						3	22706	(18576, 26836)	А
		RS	/ none	3	6130	(5117, 7144)	А	В		3	10373	(9264, 11481)			с	D			3	26409	(17137, 35682)	A
		LeuOme	Ome)	3	6387.7	(6234.1, 6541.4)	А			3	12425	(11980, 12870)	A	в	с				3	28690	(16785, 40595)	А
	d-type		AzF	3	6567	(5895, 7240)	А			3	13463	(12322, 14603)	A	в					3	29783	(21053, 38512)	А
	Wil	RS	/ none	3	5961	(5074, 6848)	А	В		3	11812	(10432, 13192)		в	с				3	27057	(18320, 35794)	A
tion		TyrOme	Ome)	3	6283	(5866.1, 6699.9)	A			3	12457	(11927, 12987)	A	в					3	27824	(16820, 38828)	A
al Detec			AzF	3	6708	(5759, 7657)	А			3	15115	(13764, 16466)	A						3	30569	(17001, 44136)	A
C-termin		eRS	Y none	3	81.63	(75.97, 87.30)			E	3	67.67	(59.08, 76.25)						ŀ	3	248.3	(78.2, 418.5)	A
-	Ŧ	LeuOmt	Ome	3	4164.7	(3894.5, 4435.0)		B C		3	7625	(5776, 9474)				DE			3	8668	(2790, 14546)	A
	construc		AzF	3	442.67	(434.91, 450.42)			DE	3	721.8	(550.2, 893.3)					F		3	537	(197.1, 876.9)	A
	TAG	a RS	Y none	3	132.37	(98.69, 166.05)			E	3	118.07	(109.53, 126.60)						G	3	373	(341.87, 404.13)	A
		TyrOmé	Ome	3	2398	(1346, 3450)		с	DE	3	4262	(3531, 4993)				E			3	3544	(1921, 5167)	A
			AzF	3	2742	(1698, 3785)		C	D	3	5370	(4764, 5976)	for			E			3	5189	(3970, 6407)	A

Table S7: One-way ANOVA with groupings via the Games-Howell method to evaluate the reproducib<u>ility of GFP-BFP reporter performance via flow cytometry.</u>

						Flow Cytom	etry Data (Repro	duce	ed)	
							GFP-BFP			
1					Ν	Mean	95% CI	Gr	oupi	ng
			S	none	3	26344	(18397, 34292)	А	в	
			anOmeR	OmeY	3	22921	(16210, 29631)	А	в	
		type	Le	AzF	3	28675	(20598, 36752)	А		
		-Wild-		none	3	27610	(18311, 36909)	А	в	
	u		/rOmeR	OmeY	3	21320	(14482, 28158)	А	в	
	Detectio		T	AzF	3	26979	(15720, 38238)	А	в	
	terminal		s	none	3	14585	(5345, 23826)	А	в	
	-N		uOmeR	OmeY	3	22040	(7072, 37009)	А	в	
		nstruct	Le	AzF	3	17315	(6307, 28323)	А	в	
		TAG co	S	none	3	14372	(8887, 19857)		в	
			yromeR	Vamo	3	16170	(11584, 20757)	А	в	
			T	AzF	3	20171	(13699, 26643)	А	в	
			S	auou	3	28140	(17329, 38950)	А		
			euOmeR	OmeY	3	25217	(16396, 34038)	А	в	
		-type		AzF	3	30921	(21265, 40578)	А		
		Wild	S	none	3	30120	(20438, 39801)	А	в	
	on		yrOmeR	Vamo	3	23831	(16921, 30741)	А	в	
	Detect			AzF	3	29901	(17745, 42057)	А	в	
	termina		S	auou	3	280.7	(38.7, 522.6)			c
	C		euOme	OmeY	3	9617	(955, 18279)		в	c
		onstruct		AzF	3	640	(198, 1082)		в	c
		TAG C	SS	none	3	406.7	(246.4, 566.9)			c
			TyrOme	OmeY	3	3387	(1558, 5217)		в	c
				AzF	3	4814	(1778, 7858		в	c
	-	меа	ns ti	nat i	ao ne	ot share a let	ter are statistica	iíy di	ffer	en

Table S8: One-way ANOVA with groupings via the Games-Howell method to evaluate the abilities of RFP-GFP, BFP-GFP, and GFP-BFP reporters to discriminate between ncAA incorporation events of varying efficiencies (and wild-type controls) via microplate reader.

٦

	RFP-GFP BFP-GFP								GFP-BFP						
				N	Mean	95% CI	Grouping	N	Mean	95% CI	Grouping	N	Mean	95% CI	Grouping
			none	3	620515	(495173, 745857)	АВ	3	10706239	(9752387, 11660091)	A	3	23540322	(16520045, 30560599)	A
		euOmeRS	OmeY	3	641626	(540257, 742996)	А	3	9465516	(7432078, 11498954)	A	3	20651655	(15130827, 26172483)	А
	-type	Г	AzF	3	599362	(572771, 625954)	АB	3	10359836	(10059445, 10660226)	A	3	23771617	(16215718, 31327516)	A
	Wild	S	none	3	604032	(493554, 714509)	AВ	3	9462927	(7113018, 11812837)	A	3	22105138	(16745600, 27464676)	А
и		yrOmeR:	OmeY	3	551924	(465708, 638139)	AВ	3	8713931	(7409970, 10017892)	A	3	17089913	(12041813, 22138014)	А
Detecti		T.	AzF	3	562679	(459852, 665507)	AВ	3	10377311	(9403552, 11351069)	A	3	20376906	(14440720, 26313092)	А
terminal		s	none	3	448974	(407652, 490296)	AВ	3	10394040	(9394451, 11393629)	A	3	12494469	(3993947, 20994991)	A
N		auOmeR	OmeY	3	536657	(499394, 573920)	AВ	3	9012477	(7689337, 10335617)	A	3	16670226	(10682510, 22657942)	А
	nstruct	Le	AzF	3	416156	(368893, 463418)	в	3	10568754	(7730818, 13406689)	A	3	13538609	(5128754, 21948464)	А
	TAG co	S	none	3	408299	(342151, 474448)	в	3	12620939	(10422772, 14819105)	A	3	12420048	(10639622, 14200474)	А
		yrOmeR	OmeY	3	456924	(399847, 514000)	в	3	11164627	(7953631, 14375624)	A	3	14311679	(9829997, 18793361)	А
		т	AzF	3	510425	(440547, 580303)	АВ	3	13538616	(10504511, 16572720)	А	3	15777682	(12070723, 19484641)	А
		s	none	3	12391834	(9043994, 15739675)	A	3	29926249	(23143138, 36709359)	А	3	7755078	(4678883, 10831273)	А
		auOmeR	OmeY	3	11578707	(8755388, 14402026)	A	3	24820691	(17492926, 32148456)	АВС	3	7444236	(4082222, 10806249)	АВ
	type	Ľ	AzF	3	11362153	(10072694, 12651611)	A	3	28910583	(24958136, 32863030)	A	3	7703980	(3707880, 11700080)	АВ
	Wild	s	none	3	11068101	(9600508, 12535694)	A	3	25228671	(18846129, 31611212)	АВ	3	7315088	(5959395, 8670781)	АВ
ч		yrOmeR	OmeY	3	9827196	(8133696, 11520696)	A	3	23068601	(18084324, 28052878)	АВС	3	6022844	(3593073, 8452614)	АВ
Detecti		т	AzF	3	10088130	(7772110, 12404150)	A	3	29334925	(24602574, 34067275)	A	3	6928395	(5272844, 8583946)	АВ
termina		S	none	3	60903	(-584984, 706790)	с	3	65172	(-605078, 735422)	E	3	-337784	(-1978503, 1302934)	с
ů		euOmeR	OmeY	3	7974976	(6850592, 9099361)	A	3	14015849	(13021805, 15009893)	вс	3	2680573	(-113144, 5474290)	АВС
	Instruct	Ľ	AzF	3	822572	(116018, 1529127)	с	3	1599123	(886230, 2312017)	D	3	-347913	(-2411930, 1716103)	с
	TAG co	s	none	3	539344	(-528534, 1607221)	с	3	834882	(-188738, 1858502)	DE	3	-349264	(-3289472, 2590944)	с
		yrOmeR	OmeY	3	4632104	(3744436, 5519773)	в	3	11426749	(9123118, 13730380)	с	3	1664856	(-1183091, 4512802)	ВC
		т	AzF	3	5688804	(4815829, 6561779)	АВ	3	15241406	(12980846, 17501966)	вс	3	1350448	(-787925, 3488820)	ВC
						*Me	ans that a	lo not	t share a lette	r are statistically different					

Table S9: One-way ANOVA with groupings via the Games-Howell method to evaluate the extent to which BFP-GFP reporters (BXG, AltTAG, AltTAG2, AltTAG3, AltTAG4 and 2TAG) support statistically distinct levels of readthrough efficiency via flow cytometry.

			Flow Cytometry Data													
					LeuOmeRS							TyrOmeRS				
			Ν	Mean	95% CI	(Grou	ping	3	Ν	Mean	95% CI	(Grou	ping	
	n	BYG	3	35410	(28853, 41966)	А				3	36976	(25386, 48566)	Α			
	scti	BXG	3	32982	(30406, 35557)	Α				3	34838	(32898, 36778)	Α			
	Dete	AltTAG	3	32253	(23368, 41138)	Α				3	32674	(27699, 37648)	А			
	al [AltTAG2	3	29952	(20449, 39454)	А				3	34036	(16091, 51981)	А			
	a,	AltTAG3	3	35486	(33197, 37775)	Α				3	35193	(34398, 35987)	Α			
-	ter	AltTAG4	3	28782	(27938, 29626)	А				3	31288	(26073, 36503)	Α			
NCA/	ż	2TAG	3	35734	(16441, 55026)	А				3	31198	(10004, 52391)	А			
lo r	n	BYG	3	31684	(25184, 38185)	А				3	31773	(19448, 44097)	А			
2	ctic	BXG	3	185	(169.49, 200.51)		в			3	293	(233.4, 352.6)		в		
	bete	AltTAG	3	47.67	(35.93, 59.41)				D	3	94.3	(36.1, 152.6)			С	D
	al D	AltTAG2	3	46	(39.43, 52.57)				D	3	107.7	(56.5, 158.8)			С	D
	min	AltTAG3	3	74.67	(68.42, 80.92)			с		3	135	(93.96, 176.04)			с	
	ter	AltTAG4	3	48.33	(33.78, 62.89)				D	3	88.67	(73.49, 103.84)			с	D
	Ċ	2TAG	3	23	(-3.29, 49.29				D	3	38	(10.01, 65.99)				D
	n	BYG	3	29430	(17375, 41485)	Α				3	30031	(17723, 42338)	Α			
	cti	BXG	3	33571	(24603, 42539)	А				3	37602	(22552, 52653)	Α			
	Dete	AltTAG	3	36803	(27473, 46133)	А				3	36408	(24832, 47985)	Α			
	al C	AltTAG2	3	23112	(13957, 32266)	А				3	23644	(8904, 38383)	Α			
	min	AltTAG3	3	35684	(15805, 55563)	Α				3	28243	(331, 56156)	А			
	ter	AltTAG4	3	34288	(25401, 43175)	А				3	36803	(17590, 56016)	А			
leΥ	ż	2TAG	3	51350	(28332, 74369)	А				3	39453	(36987, 41920)	А			
ш О	n	BYG	3	25853	(14719, 36987)	Α				3	26186	(13388, 38984)	Α			
	ctic	BXG	3	14699	(9869, 19528)	А				3	9237	(3810, 14664)	А			
	bete	AltTAG	3	3835	(2985, 4684)	Α	в			3	1940	(525, 3355)	Α			
	alD	AltTAG2	3	2118	(1201, 3035)		в			3	1208	(327, 2089)	А			
	'n	AltTAG3	3	5580	(1631, 9530)		в			3	1782	(-300, 3865)	А			
	teri	AltTAG4	3	1873	(669, 3077)		в			3	1473	(528, 2419)	Α			
	Ċ	2TAG	3	3130	(1853, 4407)		в			3	593	(498.5, 687.5)	А			
	n	BYG	3	39138	(34517, 43758)	Α				3	37525	(28872, 46179)	Α			
	ctic	BXG	3	41435	(40534, 42336)	А				3	45489	(42796, 48182)	Α			
	Dete	AltTAG	3	22375	(18923, 25827)	А				3	24541	(-721, 49803)	Α			
	al C	AltTAG2	3	22286	(19577, 24995)	А				3	25846	(258, 51434)	А			
	mi	AltTAG3	3	42395	(28499, 56291)	А				3	48993	(38879, 59108)	Α			
	ter	AltTAG4	3	35931	(28629, 43234)	Α				3	43624	(38284, 48963)	Α			
ų.	ż	2TAG	3	44608	(27757, 61459)	А				3	43144	(42011, 44277)	А			
Az	n	BYG	3	35625	(31667, 39583)	Α				3	33520	(25299, 41741)	Α			
	ctic	BXG	3	1475.7	(1298.4, 1652.9)		в			3	12357	(11299, 13415)		в		
	bete	AltTAG	3	137	(108.79, 165.21)			С		3	1277	(-208, 2762)			с	
	al D	AltTAG2	3	128.33	(114.21, 142.46)			с		3	1492	(-626, 3609			с	
	min	AltTAG3	3	297.3	(180.4, 414.2)			с		3	3763	(1513, 6012)			с	
	ter	AltTAG4	3	113.67	(95.02, 132.31)			с		3	1923	(1483, 2363)			с	
	Ċ	2TAG	3	46.67	(17.66, 75.67)				D	3	761.7	(686.4, 836.9)			с	
				*Means th	at do not share a	lette	er ar	e sti	atis	tical	ly differer	nt				

					Flow C	ytome	try D	ata:	BFP-GFP (A	ltTAG)					
					LeuOmeRS					TyrOmeRS					
			N	Mean	95% CI	Grou	ping	Ν	Mean	95% CI		Gr	oup	ing	
	no	BY4741	3	20239	(19287, 21190)		в	3	19346	(17190, 21502)			С		
	cti	ΔUPF1	3	40479	(37804, 43154)	Α		3	38690	(37595, 39786)	А				
¥	Dete	ΔUPF2	3	39594	(36600, 42588)	Α		3	33113	(29700, 36526)	А	в			
DC DC	al	ΔUPF3	3	40374	(36251, 44497)	А		3	33305	(29718, 36893)	А	в			
ž	mi.	ΔTPA1	3	21897	(19478, 24316)	1	в	3	20437	(17900, 22975)			с		
	-ter	ΔPOP2	3	24063	(20822, 27305)]	в	3	21875	(19179, 24572)			с		
	ż	ΔPPQ1	3	24012	(21109, 26915)	1	В	3	30654	(27219, 34089)		в			
	no	BY4741	3	23193	(21566, 24819)		В	3	22976	(19225, 26727)					Е
	ctic	ΔUPF1	3	36904	(35454, 38354)	Α		3	37447	(35215, 39679)	1	в			
7	Dete	ΔUPF2	3	33000	(25865, 40136)	А	в	3	32290	(30556, 34024)	1		с		
me			3	34451	(31500, 37403)	Α		3	30343	(27617, 33069)			с	D	
0	min	ΔTPA1	3	28704	(26088, 31321)	1	в	3	28496	(27016, 29977)	1			D	Е
	ter	ΔPOP2	3	28452	(22806, 34098)	Α	в	3	30567	(26390, 34744)			с	D	
	ż	ΔPPQ1	3	34090	(24392, 43787)	А	в	3	45845	(45069, 46621)	А				
	no	BY4741	3	20931	(19306, 22557)		В	3	25622.7	(25370, 25875.3)			С		
	sctio	ΔUPF1	3	40284	(31910, 48657)	Α		3	36715	(31307, 42123)	А	в			
	Dete	ΔUPF2	3	40705	(33263, 48147)	Α		3	33747	(32825, 34669)	1	в			
AzF	al C	ΔUPF3	3	40226	(38691, 41760)	А		3	32040	(29326, 34754)	1	в			
	ai.	ΔTPA1	3	23228	(20242, 26213)	1	в	3	30653	(29433, 31873)		в			
	ter	ΔPOP2	3	24579	(21869, 27288)	1	в	3	30078	(23062, 37095)	1	в	С		
	ź	ΔPPQ1	3	25138	(20239, 30038)	1	В	3	46198	(45283, 47112)	А				
				*Means ti	hat do not share a l	etter d	nre st	atist	ically differ	ent					

Table S10: One-way ANOVA with groupings via the Games-Howell method to evaluate the varying expression levels of N-terminal detection for the alternate BFP-GFP reporter (AltTAG) with various BY4741 single gene knockout strains via flow cytometry.

Table S11: One-way ANOVA with groupings via the Games-Howell method to evaluate the
varying expression levels of N-terminal detection for the BFP-GFP reporter (BXG) with various
BY4741 single gene knockout strains via flow cytometry.

		Flow Cytometry Data: BFP-GFP (BXG)													
				Leu	OmeRS						TyrOmeRS				
			N	Mean	95% CI	Gro	oupi	ng	Ν	Mean	95% CI	G	rou	pin	g
	n	BY4741	3	21842	(20519, 23165)			С	3	22214	(19782, 24646)		В		
	ectio	∆UPF1	3	40239	(35152, 45327)	A			3	24240	(-24791, 73271)	Α	в		
A	Dete	∆UPF2	3	40741	(36537, 44945)	A			3	31581	(26703, 36458)	A			
0 DC	al [∆UPF3	3	39293	(34245, 44342)	A			3	28729	(11789, 45669)	A	в		
ž	mir	ΔTPA1	3	24866	(20806, 28927)		в	С	3	22237	(19672, 24802)		в		
	-ter	ΔPOP2	3	25093	(22536, 27651)		в	С	3	24151	(22582, 25720)	А	в		
	ż	ΔPPQ1	3	27321	(24066, 30577)		в		3	30158	(26379, 33936)	А			
	uo	BY4741	3	25217	(24785, 25650)		в		3	26170	(23077, 29262)		В		
	ecti	∆UPF1	3	30181	(28558, 31804)		в		3	20145	(-20097, 60387)	Α	в		
	Dete	∆UPF2	3	26703	(23716, 29689)		в		3	25476	(23820, 27132)		в		
me	al [∆UPF3	3	27402	(25485, 29319)		в		3	23226	(11752, 34700)	А	в		
0	mir	ΔTPA1	3	30667	(23963, 37371)	A	в		3	29182	(27342, 31022)		в		
	-ter	ΔPOP2	3	29854	(28143, 31565)		в		3	30352	(26227, 34478)		в		
	ż	ΔPPQ1	3	37452	(34579, 40325)	А			3	39512	(34341, 44683)	А			
	on	BY4741	3	22982	(20118, 25846)			С	3	27806	(26300, 29312)			С	D
	ectio	∆UPF1	3	38289	(36302, 40277)	А			3	19546	(-19395, 58487)	А	в	С	D
	Dete	∆UPF2	3	37314	(29370, 45259)	А	в		3	26292	(24915, 27669)				D
AzF	al [∆UPF3	3	38267	(34937, 41596)	A			3	24433	(12446, 36420)	A	в	С	D
TE ΔΤΡΑ1 3 25831 (22826, 28836) B C 3						3	30374	(28048, 32701)]	в	С				
	-ter	∆POP2	3	26434	(25195, 27672)		в	с	3	32514	(31093, 33936)]	в		
	ż	ΔPPQ1	3	29695	(26503, 32886)		В		3	40822	(36337, 45307)	А			
			*Mean	s that do r	ot share a letter	are	sta	tist	ical	ly differen	t				

Table S12: One-way ANOVA with groupings via the Games-Howell method to evaluate the varying expression levels of N-terminal detection for the drop-in yeast display reporter with various BY4741 single gene knockout strains via flow cytometry.

				Flow Cytometry Data - Drop-in Yeast Display												
					LeuOmeRS							TyrOmeRS				
			Ν	Mean	95% CI	G	Grou	ping	ļ	Ν	Mean	95% CI	(Grou	ping	ļ
	5	BY4741	3	6501	(5316, 7686)			С		3	5021	(4406, 5636)			С	
	sctio	ΔUPF1	3	16275	(15347, 17202)	Α				3	14639	(11834, 17443)	А			
¥	Detre	ΔUPF2	3	9628	(9017, 10240)	1	в			3	7882	(6546, 9218)		в		
Du c	hal [ΔUPF3	3	8927	(7715, 10140)	1	в			3	4955	(-5721, 15630)	А	в	С	D
ž	mir	ΔTPA1	3	5194	(4067, 6320)	1		с	D	3	4296	(3247, 5346)			с	D
	-ter	ΔPOP2	3	4701.7	(4324.6, 5078.7)	1		С	D	3	3971	(3432, 4510)				D
Ż ΔΡΡQ1 3 4695 (3758, 5632)							D	3	4022	(2811, 5232)			С	D		
S BY4741 3 5831 (5030, 6633)							С		3	5582	(5033, 6132)		В	С		
	ectic	ΔUPF1	3	13641	(11791, 15492)	A				3	12060	(10946, 13173)	А			
≿	Dete	ΔUPF2	3	7791.7	(7698.6, 7884.7)	1	в			3	6630	(5276, 7984)		В		
me	ial [ΔUPF3	3	7565	(5416, 9714)	1	в	с		3	7121	(6067, 8174)		в		
0	mir 1	ΔTPA1	3	4564	(3633, 5496)	1		С		3	4527	(3750, 5303)			с	D
	-ter	ΔΡΟΡ2	3	4008	(3185, 4831)]		С		3	4013	(3037, 4989)				D
	Ż	ΔPPQ1	3	4268	(3286, 5250)			с		3	4101	(3636, 4567)				D
	5	BY4741	3	7233.7	(7010.1, 7457.3)		В			3	5567	(4720, 6415)		В	С	
	sctic	ΔUPF1	3	17442	(15792, 19091)	Α				3	13832	(9660, 18004)	Α			
	Detre	ΔUPF2	3	8399	(7669, 9130)	1	в			3	6782	(6296, 7268)	А	В		
AzF	hal [ΔUPF3	3	8650	(7723, 9576)	1	в			3	6705	(5958, 7452)	А	в		
	ai.	ΔTPA1	3	4567	(4355.8, 4778.2)	1		с		3	4090	(3397, 4782)				D
	-ter	ΔΡΟΡ2	3	5020.3	(4697.0, 5343.7)]		С		3	4210	(3588, 4832)				D
	ż	ΔPPQ1	3	5159	(4708, 5610)	1		С		3	4329	(3481, 5178)			С	D
				*Means ti	hat do not share a le	etter	are	stat	isti	cally a	lifferent					

Primer Name	Primer Sequence	Intended Reaction	DNA Template
N-GFP-F	GTCAAGGAGAAAAAACCCCCGGATCG AATTCCCTACTTCATACATTTTCAATT AAGATGTCCAAGGGCGAGGAGCTCT TTAC	Cloning pCTCON2- sfGFP/sfGFP151TAG and pCTCON2-GXB/GYB	pCTCON2-BYG
C-GFP-R	CAGCAGCGGAGCCAGCGGATCCCAT CTCGAGCTTATAGAGCTCATCCATGC C	Cloning pCTCON2-GXB/GYB	pCTCON2-BYG
N-BFP-FX	ATGGGATCCGCTGGCTCCGCTGCTG GTTCTGGCGAATAGATGAGCGAGCT GATTAAGGAGAACATG	Cloning pCTCON2-GXB	pCTCON2-BYG
C-BFP-R	GTTACATCTACACTGTTGTTATCAGAT CTCGAGCTATTATTAGTGGTGGTGGT GGTGGTGATTAAGCTTGTGCCCCAGT TTGCTAG	Cloning pCTCON2-GXB/GYB	pCTCON2-BYG
N-BFP-FY	ATGGGATCCGCTGGCTCCGCTGCTG GTTCTGGCGAATACATGAGCGAGCTG ATTAAGGAGAACATG	Cloning pCTCON2-GYB	pCTCON2-BYG
mTagBFP2-F-pCT	ATCGAGAATTCCCTACTTCATACATTT TCAATTAAGATGAGCGAGCTGATTAA GGAGAAC	Cloning pCTCON2-BXG/BYG	pBAD-mTAGBFP2
mTagBFP2-R-pCT	ATCGAGGATCCCATATTAAGCTTGTG CCCCAGTTTGC	Cloning pCTCON2-BXG/BYG	pBAD-mTAGBFP2
GFP-151F	CTGGAGTATAATTTCAATTCCCATAAT GTATAGATTACCGCAGATAAGCAAAA GAATGGC	Cloning pCTCON2- sfGFP151TAG	pCTCON2-BYG
GFP-151R	GCCATTCTTTTGCTTATCTGCGGTAAT CTATACATTATGGGAATTGAAATTATA CTCCAG	Cloning pCTCON2- sfGFP151TAG	pCTCON2-BYG
Rev-BgIII-HIS	GTTACATCTACACTGTTGTTATCAGAT CTCGAGCTATTATTAGTGGTGGTGGT GGTGGTG	Cloning pCTCON2- sfGFP151TAG and pCTCON2- sfGFP	pCTCON2-BYG
pCTCON2-BFP- Fwd	TTAACGTCAAGGAGAAAAAACCCCCGG ATCG	Amplify BFP-GFP from pCTCON2 construct	pCTCON2-BXG
pCTCON2-GFP- Rev	GAGCTCATCCATGCCATGAGTAATGC CTGC	Amplify BFP-GFP from pCTCON2 construct	pCTCON2-BXG
RCFwd_1TAG_BFP GFP	GCCCTTGGATGCGTATTCGCCAGAAC CAGCAGCGGAGCCAG CCTATCCCATATTAAGCTT	Amplify BFP segment with altTAG location	pCTCON2-BXG
Fwd_1TAG_BFPGF P	AAGCTTAATATGGGATAGGCTGGCTC CGCTGCTGGTTCTG GCGAATACGCATCCAAGGGC	Amplify GFP segment with altTAG location	pCTCON2-BXG
RCForward_AltTA G2_BFPGFP	GCCCTTGGATGCGTATTCGCCAGAAC CAGCAGCCTAGCCAGCGGATCCCAT ATTAAGCTT	Amplify BFP segment with altTAG2 location	pCTCON2-BYG
Forward_AltTAG2_ BFPGFP	AAGCTTAATATGGGATCCGCTGGCTA GGCTGCTGGTTCTGGCGAATACGCAT CCAAGGGC	Amplify GFP segment with altTAG2 location	pCTCON2-BYG
RCForward_AltTA G3_BFPGFP	GCCCTTGGATGCGTATTCGCCAGAAC CCTAAGCGGAGCCAGCGGATCCCAT ATTAAGCTT	Amplify BFP segment with altTAG3 location	pCTCON2-BYG
Forward_AltTAG3_ BFPGFP	AAGCTTAATATGGGATCCGCTGGCTC CGCTTAGGGTTCTGGCGAATACGCAT CCAAGGGC	Amplify GFP segment with altTAG3 location	pCTCON2-BYG
RCForward_AltTA G4_BFPGFP	GCCCTTGGATGCGTATTCGCCCTAAC CAGCAGCGGAGCCAGCGGATCCCAT ATTAAGCTT	Amplify BFP segment with altTAG4 location	pCTCON2-BYG

Table S13: Primers used for cloning the various reporters.

Forward_AltTAG4_ BFPGFP	AAGCTTAATATGGGATCCGCTGGCTC CGCTGCTGGTTAGGGCGAATACGCA TCCAAGGGC	Amplify GFP segment with altTAG4 location	pCTCON2-BYG
RCFwd_2TAG_BFP GFP	GCCCTTGGATGCCTATTCGCCAGAAC CAGCAGCGGAGCCAGCCTATCCCAT ATTAAGCTT	Amplify BFP segment with 2TAG location	pCTCON2-BXG
Fwd_2TAG_BFPGF P	AAGCTTAATATGGGATAGGCTGGCTC CGCTGCTGGTTCTGGCGAATAGGCAT CCAAGGGC	Amplify GFP segment with 2TAG location	pCTCON2-BXG
pCTCON2-Xbal- fwd-Gibson	AGCTGGAGCTCCACCGCGGTGGCGG CCGCTCTAGAGCTGGTACCAATTCCT TGAATTTTC	Amplify reporter from pCTCON2 vector to pRS416 vector	pCTCON2-BXG-altTAG, pCTCON2-BXG
Gibson Sall Rev	GCGAATTGGGTACCGGGCCCCCCCT CGAGGTCGACCGAATTGGAGCTCAAT TCTCTTAGG	Amplify reporter from pCTCON2 vector to pRS416 vector	pCTCON2-BXG-altTAG, pCTCON2-BXG
L1TAGfwd	GCGGTAGCGGAGGCGGAGGGTCGG CTAGCTAGATACAGATGACTCAAAGT CCCAGTTCACTA	Used to introduce a TAG codon on the L1 position	pRS416-Aga1p- FAPB2.3.6
L1TAGrev	TAGTGAACTGGGACTTTGAGTCATCT GTATCTAGCTAGCCGACCCTCCGCCT CCGCTACCGC	Used to introduce a TAG codon on the L1 position	pRS416-Aga1p- FAPB2.3.6
Aga1p-G2957A- FWD	ACCATTGATGAAGTTTGGTATTGTATG GAGATTGAAGTAGT GGAAACTTCTGTAGTGGT	Used to fix mutation in Aga1p for the WT constructs	pRS416-Aga1p- FAPB2.3.6
Aga1p-G2957A- REV	TACCACTACAGAAGTTTCCACTACTTC AATCTCCATACAATAC CAAACTTCATCAATGGT	Used to fix mutation in Aga1p for the WT constructs	pRS416-Aga1p- FAPB2.3.6
1-DROPIN-Rv3	AACCCTCACTAAAGGGAACAAAAGCT GGGTACCTTAACTGAAAATTACATTG CAAGCAAC	Used to amplify Aga1p from YIP sHRPa-Aga1p	YIP sHRPa-Aga1p
2-DROPIN-Fv3	AATATTGCCTTGGCATCTGATCCAGA AACGATTCTAGTGACGATAACCAAGA CAAACGAT	Used to amplify Aga1p from YIP sHRPa-Aga1p	YIP sHRPa-Aga1p
3-DROPIN-Rv3	ATCGTTTGTCTTGGTTATCGTCACTAG AATCGTTTCTGGATCAGATGCCAAGG CAATATT	Used to amplify the region between GAL1-10 and Aga1p overlap in pCTCON2	pCTCON2
4-DROPIN-Fv3	AAAGTAAGAATTTTTGAAAATTCAATA TAAATGACATTATCTTTCGCTCATTTT ACCTAC	Used to amplify the region between GAL1-10 and Aga1p overlap in pCTCON2	pCTCON2
pRS416Aga1pXbal JSFwd	GCTGGAGCTCCACCGCGGTGGCGGC CGCTCTAGAGGTACCTTAACTGAAAA TTACATTGC	Updated primer from KpnI forward for Aga1p cloning in pRS416	pCTCON2-Aga1p- FAPB2.3.6
Con2seqfwd	GTTCCAGACTACGCTCTGCAG	Used to amplify FAPB2.3.6 and FAPB2.3.6L1TAG for cloning into pCTCON2-Aga1p	pCTCON2-FAPB2.3.6 and pCTCON2- FAPB2.3.6L1TAG
Con2seqrev	GATTTTGTTACATCTACACTGTT	Used to amplify FAPB2.3.6 and FAPB2.3.6L1TAG for cloning into pCTCON2-Aga1p	pCTCON2-FAPB2.3.6 and pCTCON2- FAPB2.3.6L1TAG

Fig. S1: Comparison of measurements of ncAA incorporation between two different flow cytometers (LSR-II and Attune NxT). Yeast display and BFP-GFP fluorescent reporter calculations of (A) relative readthrough efficiency (RRE) and (B) maximum misincorporation frequency (MMF) with four orthogonal translation system-ncAA combinations run on both the LSR-II and Attune NxT. Cells from the same induced cultures were run on each instrument in these experiments. For a summary of statistical analyses comparing the datasets obtained on the different instruments, see Table S13.

Fig. S2: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with yeast display, a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter. Performance was evaluated with an alternative analysis method using the median fluorescence intensity of the gated single cell population (see Materials and Methods for details). The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S3: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with yeast display, a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter. Performance was evaluated with an alternative analysis method using the median fluorescence intensity of reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S4: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with yeast display, a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter. Performance was evaluated with an alternative analysis method using the median fluorescence intensity of reporter-expressing cells with background subtraction and normalization to the median fluorescence intensity of the cells expressing the wild-type construct induced in the absence of ncAAs (see Materials and Methods for details).

Fig. S5: Reporter performance comparison. Measurement of reporter expression level (either yeast display or a RFP-GFP dual-fluorescent protein reporter) with an alternative analysis method using the median fluorescence intensity of the cell population exhibiting abovebackground reporter expression. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S7: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with yeast display, a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter. Performance was evaluated with an alternative analysis method using the mean fluorescence intensity of reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S8: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with yeast display, a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter. Performance was evaluated with an alternative analysis method using the mean fluorescence intensity of reporter-expressing cells with background subtraction and normalized to the mean fluorescence intensity of the cells expressing the wild-type construct induced in the absence of ncAAs.

Fig. S9: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter and analyzed on a microplate reader. Performance was evaluated with an alternative analysis method using sample fluorescence normalized to sample OD600. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S10: Reporter performance comparison. Quantification of ncAA incorporation efficiency for four orthogonal translation system-ncAA combinations performed with a RFP-GFP dual-fluorescent protein reporter, and a sfGFP single-fluorescent protein reporter and analyzed on a microplate reader. Performance was evaluated with an alternative analysis method using sample fluorescence normalized to sample OD600 and followed by background subtraction to account for cellular autofluorescence. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Figure S12: Conventional yeast display (YD) versus drop-in yeast display (DI-YD). Quantification of ncAA incorporation efficiency and fidelity for conventional display (in RJY100) and drop-in display (in multiple Δ TRP1 strains) in a pCTCON2 vector.

Figure S13: Evaluation of ncAA incorporation events in a series of single-gene knockout strains using two dual-fluorescent protein reporters and a drop-in yeast display (DI-YD) reporter. (A) Measurements of ncAA incorporation efficiency and fidelity in BY4741 and six single-gene knockouts of BY4741 using the BXG BFP-GFP reporter in a pRS416 (URA3 marker) plasmid backbone. (B) Measurements of ncAA incorporation efficiency and fidelity in BY4741 and six single-gene knockouts of BY4741 using the drop-in yeast display reporter in a pRS416 (URA3 marker) plasmid backbone. (C) Complete set of ncAA incorporation measurements for efficiency and fidelity using the Alt-TAG BFP-GFP reporter, BXG BFP-GFP reporter, and drop-in yeast display reporter in pRS416 (URA marker) plasmid backbones. All conditions reported here were evaluated with end point measurements in biological triplicate. The statistical analyses for these data can be found in Tables S7-S12.

Fig. S14: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated with median fluorescence intensity using single cell population analysis as described in Materials and Methods Section 2.11. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with Alt-TAG

Fig. S15: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated using the median fluorescence intensity of reporter-expressing cells with background subtraction as described in Materials and Methods Section 2.11. The condition denoted by absence of ncAA and TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S16: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated using the median fluorescence intensity of reporter-expressing cells with background subtraction and normalized to expression levels of cells expressing the wild-type reporter induced in the absence of ncAAs.

Fig. S17: Measurement of reporter expression level in BY4741 and six single-gene knockout strains containing Alt-TAG BFP-GFP using the median fluorescence intensity of the cell population exhibiting above-background reporter expression. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S18: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Performance was evaluated using the mean fluorescence intensity of the single cell population. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S19: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Performance was evaluated using the mean fluorescence intensity of reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S20: Alternate analysis of BY4741 and six single-gene knockout strains using the Alt-TAG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated using the mean fluorescence intensity of reporter-expressing cells with background subtraction and normalized to mean expression levels of cells expressing the wild-type reporter induced in the absence of ncAAs.

Fig. S21: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated with median fluorescence intensity using single cell population analysis as described in Materials and Methods Section 2.11. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with BXG

Fig. S22: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated with median fluorescence intensity using reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

(Reporter-Expressing Cells + BG Subtraction Normalized to WT Reporter: Flow Cytometry Data - Median) OmeY AzF BY4741 Cells Transformed with LeuOmeRS Cells Transformed with TyrOmeRS ∆UPF1 ΔUPF2 ΔUPF3 ΔΤΡΑ1 ΔΡΟΡ2 ΔPPQ1 0.1 0.2 0.3 0.4 0.7 0.9 0 0.5 06 0.8 Fraction of Wild-type Behavior

BY4741 KO Strains with BXG

Fig. S23: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated using the median fluorescence intensity of reporter-expressing cells with background subtraction and normalized to expression levels of cells expressing the wild-type reporter induced in the absence of ncAAs.

Fig. S24: Measurement of reporter expression level in BY4741 and six single-gene knockout strains containing BXG BFP-GFP using the median fluorescence intensity of the cell population exhibiting above-background reporter expression. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S25: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated with mean fluorescence intensity using single cell population analysis as described in Materials and Methods Section 2.11. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with BXG

Fig. S26: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated with mean fluorescence intensity using reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S27: Alternate analysis of BY4741 and six single-gene knockout strains using the BXG BFP-GFP dual-fluorescent protein reporter. Measurements for the efficiency of ncAA incorporation calculated using the mean fluorescence intensity of reporter-expressing cells with background subtraction and normalized to mean expression levels of cells expressing the wild-type reporter induced in the absence of ncAAs.

BY4741 KO Strains with BXG

Fig. S28: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated with median fluorescence intensity using single cell population analysis as described in Materials and Methods Section 2.11. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S29: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated with median fluorescence intensity of reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with Drop-In Display

Fig. S30: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated using the median fluorescence intensity of reporter-expressing cells with background subtraction and normalized to expression levels of cells expressing the wild-type reporter induced in the absence of ncAAs.

Fig. S31: Measurement of reporter expression level in BY4741 and six single-gene knockout strains containing the drop-in yeast display reporter using the median fluorescence intensity of the cell population exhibiting above-background reporter expression. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

Fig. S32: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated with mean fluorescence intensity using single cell population analysis. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with Drop-In Display

Fig. S33: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated with mean fluorescence intensity using reporter-expressing cells with background subtraction. The condition denoted by absence of ncAAs and a TAG codon is the wild-type reporter construct induced in the absence of ncAAs.

BY4741 KO Strains with Drop-In Display

Fig. S34: Alternate analysis of BY4741 and six single-gene knockout strains using the drop-in yeast display reporter. Measurements for the efficiency of ncAA incorporation calculated using the mean fluorescence intensity of reporter-expressing cells with background subtraction and normalized to expression levels of cells expressing the wild-type reporter in the absence of ncAAs.