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We provide supplementary material about:

• The prediction of selected physical properties for
representative structures across the data sets we
have considered

• A classification model aimed at showing the relia-
bility of our framework for a biologically relevant
target

• An analysis of the variance and correlation of the
descriptors we have taken into account

PREDICTIONS FOR REPRESENTATIVE
STRUCTURES

We report in Table S1 the predictions of lipophilicity,
human hepatocytes intrinsic clearance and glass transi-
tion temperature (see main text for further details) for
representative molecular structures, using the full set of
descriptors described in the main text. In these specific
cases, the improvement obtained by using cliques and/or
H-wACSFs, especially upon feature selection and opti-
misation, is particularly clear.

THE TOX21 DATASET

In order to include predictions with respect to a key bi-
ological target we have built a classification model, based
on random forests, aimed at assessing the toxicity of a
number of drugs. In particular, we have considered the
very well-known Tox21 dataset, which contains 12 differ-
ent targets related to the toxicity of a given drug. This
dataset is particularly challenging as it is very sparse:
only 676 (dataset Tt) out of the 3079 (dataset Tnt) data
points feature some indication of toxicity with respect to
at least one of the 12 targets. Further details about the
dataset and said target properties can be found in e.g.
Ref. 2.

Random forests (RFs) are a machine learning tech-
nique that utilises the concept of bagging or bootstrap
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aggregation to obtain the best prediction from an ensem-
ble of decision trees (DTs). DTs have the advantages of
mirroring human decision-making and easy interpretabil-
ity. However, they suffer from high variance as two de-
cision trees trained on random partitions of data could
have very different results [3]. Now notice with a set of
n independent observations Z1, · · · , Zn each having vari-
ance σ2, the mean of the observations Z has variance
σ2/n, i.e., averaging lowers variance. This method works
for regression such that if B different training sets were
available to calculate the sets Y1, . . . ,YB of observations,
the average given by

Y =
1

B

B∑
b=1

Yb (1)

would provide a model with lower variance. Similarly, for
a classification model we would choose the mode of the
observations for each target instead of taking the mean.
Still, as it is uncommon to have multiple training sets
available, we may then bootstrap the data we do have
through taking repeated samples from it to produce B
training sets. This method is called bagging. The RFs
algorithm takes bagging one step further by decorrelat-
ing the ensemble of decision trees. Consider if there is
a strong predictor in the data set. Then the ensemble
of bagged trees will use this strong predictor in the top
split, producing bagged trees that are similar with pre-
dictions that are highly correlated. Instead of this, the
RF algorithm at each split takes a random sample of m
predictors from the full set of p predictors, usually with
m ≈ p, as split candidates - never allowing a split to con-
sider the majority of predictors available [3]. Once the
best predictor is chosen from the sample of m, the pro-
cess is repeated for the remaining splits. It follows that
on average (p −m)/p splits will not consider the strong
predictor, giving all other predictors a chance and mak-
ing the prediction results less correlated [3]. Thus, if m
were chosen to be equal to p in building an RF, it would
be the same as bagging.

Here, for each target property, we have constructed a
dataset containing 200 molecules: 100 ”toxic” molecules
(i.e. those which are flagged as toxic with respect to
that particular target) taken from the Tt dataset and
100 ”non-toxic” molecules taken from the Tnt dataset.
In some cases the number nt of toxic molecules avail-
able for a given target properties is less than 100: in
that case, we have included 200-nt non-toxic molecules
in the dataset instead. This choice represents one way to
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L1: CCC(N(CCCN)C(=O)c1ccc(C)nc1)C2=Nc3ccsc3C(=O)N2Cc4ccccc4 
L2: COc1c(cc2ccccc2c1C(=O)N(C)C[C@@H](CCN3CCC(CC3)c4ccc(O)cc4[S+](C)[O-])c5ccc(Cl)c(Cl)c5)C#N 
A1: CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O  
A2:  CC1=C(C=CC=C1Cl)NC2=CC=CC=C2C(=O)O

L1 L2 A1

A2

Molecule STD Cliques Cliques [FS] H-wACSFs H-wACSFs [GAs]

MSE σ MSE σ MSE σ MSE σ MSE σ
L1 0.212 0.506 0.166 0.623 0.066 0.233 0.057 0.218 0.087 0.118
L2 0.163 0.601 0.074 0.348 0.035 0.123 0.062 0.203 0.056 0.044
H1 5.188 2.743 0.080 0.078 0.449 0.514 0.118 0.074 0.033 0.026
H2 3.685 2.201 0.107 0.154 0.015 0.016 0.156 0.123 0.010 0.010
A1 1.651 1.306 0.709 0.407 0.396 0.271 0.284 0.285 0.047 0.058
A2 1.347 1.193 1.162 0.710 0.755 0.466 0.214 0.334 0.133 0.221

TABLE S1: Figure: 2D structure of selected molecules within the Lipo data set (L1 and L2) and the Amo data set (A1 and
A2). The corresponding SMILES [1] string are also included. Table: Mean square error (MSE) and corresponding standard

deviation (σ) for selected molecules within the Lipo (L1, L2), Hepa (H1, H2) and Amo (A1, A2) data sets. Results for
”standard” RDKit descriptors (STD), molecular cliques (Cliques) and histograms of weighted atom-centred symmetry

functions (H-wACSFs) are reported. Cliques [FS] and H-wACSFs [GAs] refer to the results obtained for cliques upon feature
selection and H-wACSFs upon optimisation, respectively - see main text for further details.

compare prediction across different target properties: we
should note that we experimented with alternative strate-
gies - obtaining results similar to those described below.
The same k-fold (with k-5) cross-validation strategy we
have used throughout this work (see main text) has been
used to quantify the accuracy of our model: with a 80%-
20% train-test split, the data reported in Fig. S1 refer to
160*5 = 800 and 40*5 = 200 data points for the training
and test predictions, respectively, thus including the 5
different splits.

As we discuss in the main text, the cliques descriptor
should be particularly suitable to pinpoint the structural
properties responsible for biological targets such as tox-
icity. Indeed, as illustrated in Fig. S1 via the confusion
matrices summarising the results we have obtained when
testing our classification model on the 12 Tox21 toxic-
ity targets, the cliques descriptor seems to be performing
quite well. The model performs quite differently in terms
of accuracy according to different target properties: for
instance, predictions concerning the SR-MMP target are
quite accurate, while in the case of the SR-ATAD5 target
our model fails to single out any of the 11 molecules that
display some toxicity in terms of this target. The per-

formance of the model is obviously related to the abun-
dance of training data with respect to the specific target:
the SR-MMP and SR-ATAD5 targets contain 142 and
11 toxic molecules, respectively - similar examples of the
obvious importance of the data points abundance within
the Tox21 dataset can be easily found in Fig. S1.

In addition, we have used the very same framework
of feature selection described in the main text to identify
specific molecular fragments that might be especially rel-
evant for this dataset. Interestingly, we find that there
exists a set of 10 cliques only (see Table S2) which are
ranked within the top 25 in terms of their Gini impor-
tance (see main text) for all the 12 toxicity targets in
the Tox21 dataset. In fact, while we are in no position to
draw any robust conclusion in terms of structure-function
relation at this stage, it is intriguing to note that this se-
lection of cliques contains aromatic rings as well as and
S-rich functional groups - a staple of many pharmaceuti-
cals currently available (see e.g. Ref. 4).
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FIG. S1: Confusion matrices summarising the performance of our Random Forest classification algorithm with respect to the
(12) target properties of the Tox21 dataset [2]. The molecular cliques descriptor (see main text for further details) alone has

been used. Labels of 0 and 1 correspond to non-toxic and toxic activity, respectively.
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Feature selection - Cliques
Tox21 dataset

Smiles Gini (mean) Gini (σ)
CC 0.112 0.007

C1=CC=CC=C1 0.094 0.012
CO 0.085 0.007
C 0.062 0.004
CN 0.058 0.005
C=O 0.053 0.004
CCl 0.035 0.006
C=C 0.029 0.005
CS 0.013 0.002
N 0.013 0.002

TABLE S2: Feature selection for the cliques descriptor in
the case of the Tox21 dataset. The full cliques vocabulary

contains in this case 310 cliques. We report the average Gini
importance index (calculated as described in the main text)

and its corresponding standard deviation σ for the ten
”most important” cliques: these cliques are within the top

25 cliques with the highest Gini index across all the 12
target properties considered.

DESCRIPTORS: VARIANCE AND
CORRELATION

When pre-processing descriptors for machine learning,
it is common practice to remove those features with zero
or near-zero variance with respect to the dataset under
consideration. The reason being that the values of these
features are constant or almost constant (in the case of
near-zero variance) across the entire dataset: as such,
one might think that they must be non-informative and
thus they can/should be safely removed. In Fig. S2 we
report the variance for each descriptors we have used with
respect to the three data sets we have considered. A few
interesting trends emerge:

• In the situation where they perform the best (the
Lipo dataset), the STD descriptors are charac-
terised by the highest amount of near-zero variance
features compared to the other two data sets. This
evidence seems to suggest that the presence of near-
zero features does not necessarily imply the need for
their removal.

• Feature selection consistently reduces the amount
of near-zero variance features within the cliques de-
scriptor. This is expected, as the cliques descriptor
is very sparse - thus with lot of potential to in-
clude ”rare” features (i.e. cliques corresponding to
extremely rare molecular fragments across a given
dataset) that might not be selected as very relevant
in term of the Gini importance index discussed in
the main text. However, in many cases these rare
features are exactly what makes a certain molecular
species unique in terms of its functional property.

MSE PCC
Train Test Train Test

Opt. H-wACSFs 0.124 ±0.019 0.838 ± 0.084 0.936 ± 0.009 0.497 ± 0.134
Opt. H-wACSFs, no 0-var 0.203±0.018 0.975 ± 0.158 0.892 ± 0.015 0.484 ± 0.171

TABLE S3: Mean square error (MSE) and Pearson
correlation coefficient (PCC) for both the training and the

test set, including the corresponding uncertainties as
calculated according to the cross-validation strategy

discussed in the main text. Opt. H-wACSFs and Opt.
H-wACSFs, no 0-var refer to the optimised (see main text)

set of H-wACSFs for the Amo dataset and the same set
where near-zero variance features have been removed.

Again, we feel that the outright removal of near-
zero feature might not be the best way forward in
the attempt to increase the predictive capabilities
of machine learning models in the context of drug
design.

• Optimised sets of H-wACSFs show a very similar
amount of near-zero features compared to the non-
optimised ones. As discussed in the main text, opti-
mised H-wACSFs perform on average significantly
better than non-optimised sets, which once more is
suggestive of the fact that near-zero variance fea-
tures might very well represent a meaningful sec-
tion of our descriptors.

To further support this claim we have removed near-zero
variance descriptors from the H-wACSFs set optimised
for the Amo dataset: the results are summarised in Ta-
ble S3, and they clear show that in this case said removal
is actually detrimental in terms of the accuracy of our
model.

On a similar note, the correlation between different
features also deserves to be discussed. To this end, we
report in figure Fig. S3 the correlation matrices for each
descriptor we have considered in this work - with re-
spect to different data sets. The values reported in the
colour map refer to the Pearson correlation coefficient,
calculated pairwise for each feature within a given de-
scriptor: it is evident that the degree of correlation is
strongly dependent on the specific nature of the descrip-
tor. In the case of the STD set, we observe blocks of
highly correlated features which - interestingly - are con-
sistently found for the three data sets we have consid-
ered: this is an indication of the fact that many STD
features are intrinsically highly correlated irrespectively
of the molecular structures we have considered. This is
expected, as features such as ”the number of n-membered
rings” and ”the number of aromatic rings” contain a
great extent of redundant information. Conversely, fea-
tures in the cliques descriptor are very much uncorrelated
throughout the whole set of them, even after feature se-
lection - where we only have a handful of molecular frag-
ments involved. This is somehow surprising in that some
cliques are definitely redundant: for instance, a clique
defined as a 6-membered ring of carbon atoms contains
six carbon-carbon bonds, which are also considered as
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cliques. Finally, the H-wACSFs features are consistently
highly correlated - which is expected, given that many
of them do contain redundant information about e.g.
the local atomic environment of adjacent atoms within
a given molecular structure. Interestingly, the optimised
H-wACSFs sets are even more correlated, on average,

than the non-optimised ones, and yet the usage of opti-
mised sets did lead to a substantial improvement of the
predictive power of our models (see main text). Thus,
we conclude that ”off-the-shelf” strategies such as the
removal of either near-zero variance or highly correlated
features should be used with special care.
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FIG. S2: Probability distribution of the variance of each feature within the different classes of descriptors used - for each
dataset we have considered.
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FIG. S3: Correlation matrices for each descriptor we have considered in this work - with respect to different data sets. The
values reported in the colour map refer to the Pearson correlation coefficient, calculated pairwise for each feature within a

given descriptor. Highly correlated and anti-correlated features are highlighted in blue and red, respectively.


