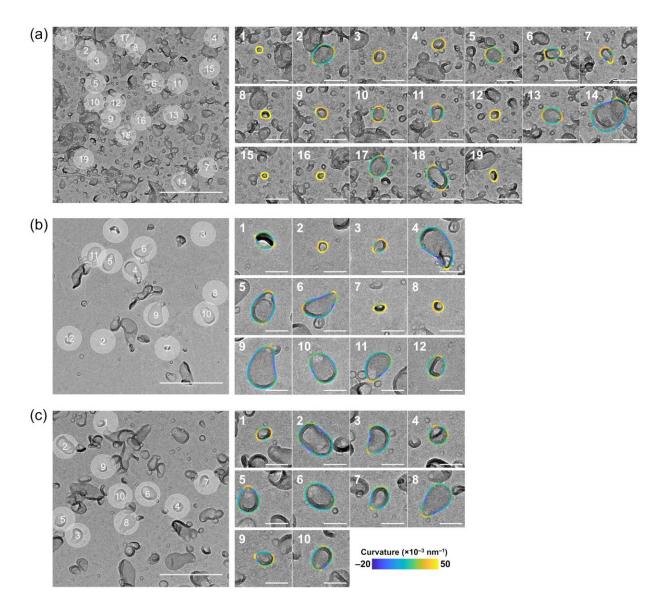
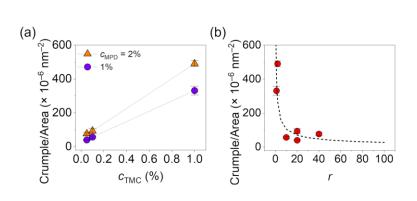
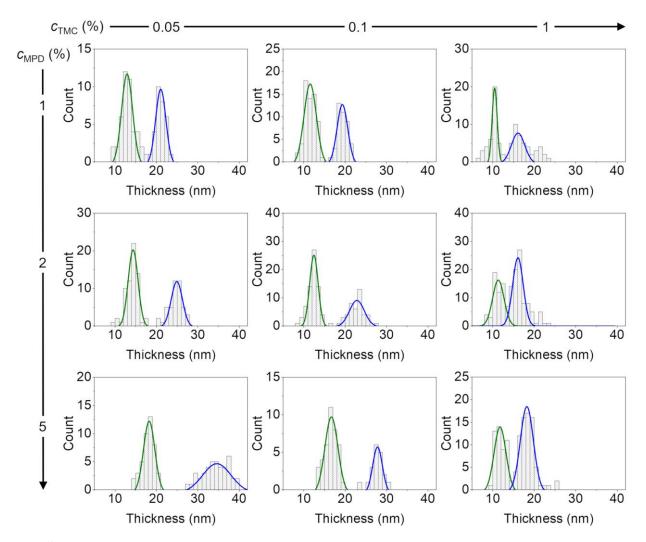

Supporting Information

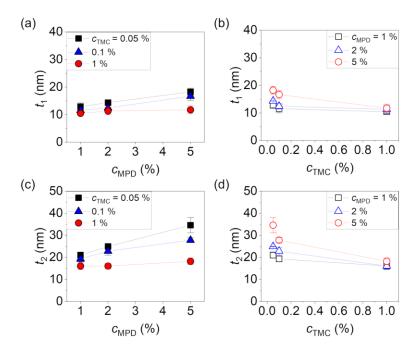
Charting the quantitative relationship between two-dimensional morphology parameters of polyamide membranes and synthesis conditions


Hyosung An,^{a,b} John W. Smith,^a Wenxiang Chen,^{a,b} Zihao Ou,^a and Qian Chen^{a,b,c,d,*}

^aDepartment of Materials Science and Engineering, ^bMaterials Research Laboratory, ^cDepartment of Chemistry, ^dBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.


*To whom correspondence should be addressed. Email: qchen20@illinois.edu


Fig. S1 (left) Low- and (right) high-magnification TEM images of polyamide membranes prepared with fixed c_{TMC} (0.05%) but varying (a) c_{MPD} of 1%, (b) c_{MPD} of 2%, and (c) c_{MPD} of 5%. TEM images are overlaid with surface contour colour-coded according to local surface curvature. Scale bars: 500 nm (left) and 100 nm (right).


Fig. S2 (left) Low- and (right) high-magnification TEM images of polyamide membranes prepared with (a) c_{MPD} of 1% and c_{TMC} of 1% TMC, (b) c_{MPD} of 1% and c_{TMC} of 0.1%, and (c) c_{MPD} of 2% and c_{TMC} of 0.1%. TEM images are overlaid with surface contour colour-coded according to local surface curvature. Scale bars: 500 nm (left) and 100 nm (right).

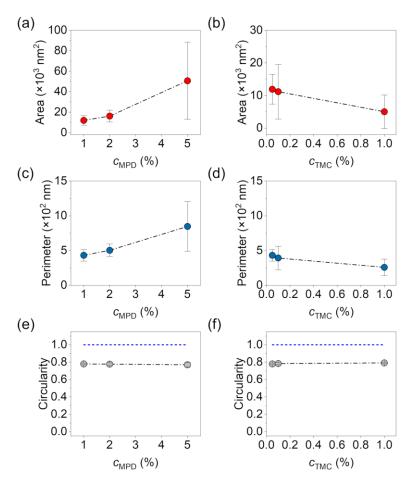

Fig. S3 Average number density of crumples as a function of (a) c_{TMC} and (b) the concentration ratio of MPD to TMC *r*. Error bars denote standard deviation. Crumple density increases with increasing c_{TMC} .

Fig. S4 Histograms of crumple thickness for polyamide membranes synthesized at different monomer concentrations as denoted by arrows.

Fig. S5 Average crumple thickness of t_1 as a function of (a) c_{MPD} with fixed c_{TMC} (0.05%) and (b) c_{TMC} with fixed c_{MPD} (1%). Average crumple thickness of t_2 as a function of (c) c_{MPD} with fixed c_{TMC} (0.05%) and (d) c_{TMC} with fixed c_{MPD} (1%).

Fig. S6 Average projected area of crumples as a function of (a) c_{MPD} with fixed c_{TMC} (0.05%) and (b) c_{TMC} with fixed c_{MPD} (1%). Average perimeter of crumples as a function of (c) c_{MPD} with fixed c_{TMC} (0.05%) and (d) c_{TMC} with fixed c_{MPD} (1%). Average circularity of crumples as a function of (e) c_{MPD} with fixed c_{TMC} (0.05%) and (f) c_{TMC} with fixed c_{MPD} (1%). Average circularity of crumples as a function of (e) c_{MPD} with fixed c_{TMC} (0.05%) and (f) c_{TMC} with fixed c_{MPD} (1%). The black dot-dashed lines in (a-f) are guide to the eye. The dashed blue lines in (e) and (f) are the scaling of perfect circular shape (circularity = 1).

x	у	Fitting eq.	R^2
$F_{\rm max}({\rm nm})$	$F_{\min}(nm)$	y = 0.67x	0.99
$F_{\rm max}({\rm nm})$	Curvature (μm^{-1})	$y = 3.1x^{-1.03}$	0.98
$F_{\rm max}({\rm nm})$	Perimeter (nm)	$y = (0.95)\pi x$	0.98
$F_{\rm max}({\rm nm})$	Area (nm ²)	$y = \pi (x/2.4)^2$	0.98

Table 1 Summary of the fitting equations from Fig. 5.