Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Role of Partial Charge Assignment Methods in High-Throughput Screening of MOF Adsorbents and Membranes for CO₂/CH₄ Separations

Cigdem Altintas and Seda Keskin*

Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey

Gas molecule	Atom	ε (K)	σ (Å)	q(e ⁻)
	С	27.0	2.80	0.70
CO_2	Ο	79.0	3.05	-0.35
CH ₄	single sphere	148.0	3.73	0.0

Table S1. Potentials used for gas molecules in molecular simulations.

Figure S1. Comparison of the experimental CO_2 uptakes¹⁻⁷ with our simulation results obtained using different charge assignment methods. Squares (circles) represent the simulation results of DDEC (Qeq)-charged MOFs while filled (empty) symbols are the results for 0.1 (1) bar.

Figure S2. Comparison of CO₂ adsorption isotherms obtained for DDEC-charged and Qeqcharged MOFs at 298 K.

Figure S3. CO_2 uptakes (a-c) and CH_4 uptakes (b-f) obtained from simulations using Qeq and DDEC charges at 0.1, 1, 5 bar for CO_2/CH_4 : 50/50 mixture.

Composition	Adsorbant matric	Range _{DDEC} (Range _{Qeq})	Range _{DDEC} (Range _{Qeq})	
Composition	Adsorbent metric	P _{ads} :1 bar, P _{des} : 0.1 bar	P _{ads} :5 bar, P _{des} :1 bar	
CO ₂ /CH ₄ : 10/90	$\Delta N_{\rm CO_2} ({\rm mol/kg})$	0.02-5.64 (0.01-5.51)	0.02-8.07 (0.02-5.43)	
	S _{ads}	1.62-1633.80 (1.23-2477.74)	1.54-1068.04 (1.14-1329.03)	
	APS (mol/kg)	0.03-2179.55 (0.02-2715.96)	0.03-846.23 (0.04-1910.94)	
	R%	9.14-92.22 (3.93- 90.58)	2.52-82.07 (1.77-81.05)	
CO ₂ /CH ₄ : 50/50	$\Delta N_{CO_2(mol/kg)}$	0.09-10.17 (0.06-6.97)	0.03-8.30 (0.10-10.26)	
	S _{ads}	1.66-1068.28 (1.02-1215.28)	1.54-883.75 (0.97-1009.64)	
	APS (mol/kg)	0.17-1282.70 (0.11-3026)	0.20-706.53 (0.13-1315.55)	
	R%	4.49-93.31 (3.65-91.02)	1.43-85.19 (2.42-83.74)	

 Table S2. Range of calculated adsorbent evaluation metrics.

Figure S4. Calculated adsorbent performance evaluation metrics using Qeq and DDEC charges at PSA condition, 298 K for CO₂/CH₄:10/90 mixture; (a) $^{\Delta N_{CO_2}}$, (b) S_{ads}, (c) APS, (d) R%. Dashed lines in (d) show R% =70%.

Figure S5. Calculated adsorbent performance evaluation metrics using Qeq and DDEC charges at VSA condition, 298 K for CO_2/CH_4 :50/50 mixture; (a) $^{\Delta N}CO_2$, (b) S_{ads} , (c) APS, (d) R%. Dashed lines in (d) show R% =85%.

Figure S6. Calculated adsorbent performance evaluation metrics using Qeq and DDEC charges at PSA condition, 298 K for CO₂/CH₄:50/50 mixture; (a) $^{\Delta N_{CO_2}}$, (b) S_{ads}, (c) APS, (d) R%. Dashed lines in (d) show R% =70%.

Figure S7. Comparison of R% of DDEC and Qeq-charged MOFs at (a, c) VSA (b, d) PSA conditions for CO_2/CH_4 : 50/50 mixture. Dashed lines show R%=85% in (a), R%=70% in (b). The top 10 MOFs identified by DDEC and Qeq methods are shown with green and blue, respectively.

Figure S8. The ratio of (a, c) CO_2 uptakes (b, d) CH_4 uptakes computed by DDEC-charged to the ones computed by Qeq-charged MOFs as a function of PLD.

MOFs PLD (Å)	N _{CO2} (mol/kg)	N _{CH4} (mol/kg)	$D_{self, CO_2}(cm^2/s)$	$D_{self, CH_4}(cm^2/s)$	S _{ads}	S _{diff}	S _{mem}	
	DDEC (Qeq)	DDEC (Qeq)	DDEC (Qeq)	DDEC (Qeq)	DDEC (Qeq)	DDEC (Qeq)	DDEC (Qeq)	
REFTUT	5.82	1.70 (0.21)	0.19 (0.35)	4.55 × 10 ⁻⁶ (3.50 × 10 ⁻ ⁵)	9.83 × 10 ⁻⁶ (3.74 × 10 ⁻ ⁵)	81.96 (5.34)	0.47 (0.94)	38.71 (5.03)
GIQYIP	3.91	4.69 (6.88)	0.13 (0.17)	4.17 × 10 ⁻⁷ (4.96 × 10 ⁻⁷)	5.20 × 10 ⁻⁶ (2.13 × 10 ⁻⁶)	318.39 (362.88)	0.09 (0.25)	29.74 (91.66)
LIFWEE	3.87	1.18 (1.39)	0.71 (0.69)	6.80 × 10 ⁻⁶ (6.17 × 10 ⁻⁶)	5.93 × 10 ⁻⁶ (3.49 × 10 ⁻⁶)	14.83 (18.20)	1.15 (1.82)	17.13 (33.18)
CAZGIT	3.98	0.50 (1.68)	0.85 (0.25)	2.53 × 10 ⁻⁶ (4.78 × 10 ⁻⁷)	2.08 × 10 ⁻⁶ (2.69 × 10 ⁻⁷)	5.31 (59.52)	1.27 (2.12)	6.75 (126.11)
ATAFIK	5.70	2.82 (0.32)	0.74 (0.88)	2.04 × 10 ⁻⁵ (1.41 × 10 ⁻ ⁴)	1.08 × 10 ⁻⁴ (2.98 × 10 ⁻⁴)	34.45 (3.26)	0.19 (0.48)	6.55 (1.55)
ACODED	3.79	1.28 (0.83)	1.70 (1.86)	6.23 × 10 ⁻⁶ (9.90 × 10 ⁻⁶)	8.31 × 10 ⁻⁶ (1.08 × 10 ⁻⁵)	6.81 (4.03)	0.76 (0.91)	5.17 (3.68)
PEPBAO	3.96	0.55 (0.31)	0.97 (1.10)	1.87 × 10 ⁻⁶ (2.75 × 10 ⁻⁶)	2.42 × 10 ⁻⁶ (3.35 × 10 ⁻⁶)	5.09 (2.57)	0.77 (0.82)	3.93 (2.12)
Co26NDP	10.60	0.48 (0.36)	1.11 (1.11)	4.51 × 10 ⁻⁵ (6.82 × 10 ⁻⁵)	1.07 × 10 ⁻⁴ (1.06 × 10 ⁻⁴)	3.87 (2.92)	0.42 (0.64)	1.64 (1.87)

Table S3. Calculated uptakes and diffusivities of CO_2 and CH_4 in DDEC-charged and Qeq-charged MOFs; adsorption, diffusion and membraneselectivities of MOFs for separation of CO_2/CH_4 mixture.

LOQLIN	13.93	1.00 (1.06)	1.26 (1.18)	2.42 × 10 ⁻⁵ (3.06 × 10 ⁻ ⁵)	1.28 × 10 ⁻⁴ (1.40 × 10 ⁻ ⁴)	7.11 (8.08)	0.19 (0.22)	1.35 (1.75)
KIGCEK	10.28	0.17 (0.26)	0.59 (0.59)	4.67 × 10 ⁻⁵ (3.80 × 10 ⁻ ⁵)	1.16 × 10 ⁻⁴ (1.08 × 10 ⁻ ⁴)	2.54 (3.93)	0.40 (0.35)	1.02 (1.38)

References

- 1. B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang and R. Blom, *Adsorption (Boston)*, 2008, 14, 755-762.
- 2. L. Du, Z. Lu, K. Zheng, J. Wang, X. Zheng, Y. Pan, X. You and J. Bai, *J. Am. Chem. Soc.*, 2012, **135**, 562-565.
- 3. M. Wriedt, J. P. Sculley, A. A. Yakovenko, Y. Ma, G. J. Halder, P. B. Balbuena and H. C. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 9804-9808.
- 4. A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998-17999.
- 5. S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, *Nat. Commun.*, 2012, **3**, 954-962.
- 6. P. Aprea, D. Caputo, N. Gargiulo, F. Iucolano and F. Pepe, *Inorg. Chem.*, 2010, **55**, 3655-3661.
- 7. A. Ö. Yazaydın, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza and D. B. Galloway, *J. Am. Chem. Soc.*, 2009, **131**, 18198-18199.