Supporting Information

Luminescent MOF crystals embedded into PMMA/PDMS

transparent films as effective NO₂ gas sensors.

Francisco G. Moscoso,*a José Almeida,^b Ahmad Sousaraei,^c Tânia Lopes-Costa,^a

Ana M. G. Silva,^b Juan Cabanillas-Gonzalez,^c Luís Cunha-Silva^b and José M.

Pedrosa^a

Figure S1: Cross-section of Tb(BTC)@PMMA films spin-coated at (a) 1000 rpm, (b) 3000 rpm and (c) 6000 rpm.

Figure S2: Cross-section of Tb(BTC)@PDMS films spin-coated at (a) 1000 rpm, (b) 3000 rpm and (c) 6000 rpm.

Figure S3: Excitation (black line, λ_{em} =545 nm) and emission spectra (red line, λ_{ex} =350 nm, and green line, λ_{ex} =305 nm) of Tb(BTC) powders. The excitation and emission wavelengths are also labelled in the graph. See main text for further details.

Figure S4: PL emission spectra (λ_{ex} : 305 nm) of Tb(BTC) powder (dotted line), Tb(BTC)@PMMA (red solid line) and Tb(BTC)@PDMS (green solid line).

Figure S5: PL quenching of Tb(BTC)PDMS (dark grey bars) and Tb(BTC)@PMMA (light grey bars) films (1000 rpm) obtained using 5, 10 and 20 mg \cdot g⁻¹ in PDMS stock solution and 5, 10 and 20 mg \cdot cm⁻³ in PMMA stock solution, under exposure to 50 ppm NO₂ gas.

Figure S6: Kinetics of Tb(BTC)@PDMS films sensing responses (PL at 546 nm) under exposure to different NO₂ concentrations (5-500 ppm).