Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Organic Field Effect Transistors Based on Self-Assembling Core-Modified Peptidic Polymers

Sameer Dhawan,^a Akshay Moudgil,^b Hanuman Singh,^a Soniya Gahlawat,^a Jisha Babu,^a Pravin P

Ingole,^a Samaresh Das,^{*b} and V. Haridas^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016,

India.

^bCentre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas,

New Delhi-110016, India.

*Corresponding Authors:

V. Haridas, E-mail: haridasv@chemistry.iitd.ac.in Samaresh Das, E-mail: samareshdas@care.iitd.ac.in

Scheme S1: Synthetic route of diacetylene monomers F1 and F2.

Scheme S2: Synthesis of Phe-appended polydiacetylenes PF and PFF.

Polymer	HOMO vs. Vacuum	LUMO vs. Vacuum	Band Gap (From CV) (eV)	Band Gap (From UV) (eV)
PFF	-6.82	-4.50	2.32	2.24
PF	-6.75	-4.31	2.44	2.28

 Table S1: Details of the band structure parameters of polymers.

Figure S1: Concentration-dependent ¹H NMR (300 MHz, CDCl₃) of **F1**. (Concentration-dependent ¹H NMR spectra of **F2** was not recorded due to its immediate polymerization)

Figure S2: Normalized Raman spectra of diacetylenes and corresponding polydiacetylenes. Blue dotted line is diacetylene before UV exposure and black solid line is after the formation of polymers. (Raman spectrum of **F2** was not recorded due to its immediate polymerization)

Figure S3: UV-Vis absorption spectra of diacetylene monomers and corresponding polymers. (UV-Vis absorption spectrum of **F2** was not recorded due to its immediate polymerization)

Figure S4: Powder X-ray diffraction pattern of polymer PFF. (PXRD data of PF was not recorded due to its sticky nature)

Figure S5: FET measurements on polymer PF (a) Output characteristics, (b) Transfer characteristics.

Figure S6: Variation of mobility with V_{GS} at room temperature under ambient conditions in the case of PFF.

Figure S7: ¹H NMR (300 MHz, CDCl₃) spectrum of M1.

Figure S8: ¹³C NMR (75 MHz, CDCl₃) spectrum of M1.

Figure S9: ESI-Mass Spectrum of M1.

Figure S10: ¹H NMR (500 MHz, DMSO- d^6) spectrum of F1.

Figure S11: 13 C NMR (125 MHz, DMSO- d^6) spectrum of F1.

Figure S12: ESI-Mass Spectrum of F1.

Figure S13: ¹H NMR (300 MHz, CDCl₃) spectrum of M2.

Figure S14: ¹³C NMR (75 MHz, CDCl₃) spectrum of M2.

Figure S15: ESI-Mass Spectrum of M2.