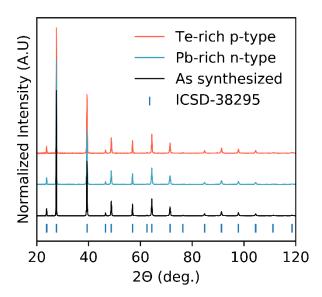

Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2019


Electronic Supplementary Information: The importance of phase equilibrium for doping efficiency: iodine doped PbTe

James Male¹, Matthias T. Agne¹, Anuj Goyal²³, Shashwat Anand¹, Ian T. Witting¹, Vladan Stevanović²³, G. Jeffrey Snyder^{1*}

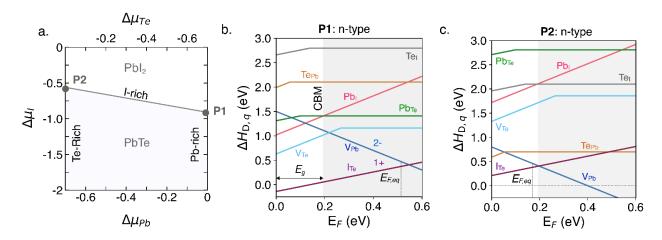

- $^{\rm 1}$ Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- ² Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, USA
- ³ National Renewable Energy Laboratory, Golden, CO, USA
- * Corresponding Author

Fig. S1. (a) Schematic, isothermal, ternary phase diagram of a binary semiconductor, AB, doped with C demonstrating various doping concepts (recreated from main text fig. 1). (b) Schematic single-phase region in the same system at three arbitrary temperatures: T_1 , T_2 , and T_3 . The shape of the single-phase region and corresponding doping properties will depend on the thermodynamic state at a given temperature.

Fig. S2. Example XRD pattern taken on nominally $PbTe_{0.99}I_{0.02}$ samples before and after saturating to Te-rich and Pb-rich compositions showing no observable impurities. The switch between Pb- and Te-rich is accompanied by a switch in conduction from n- to p-type.

Fig. S3. (a) Phase stability (shaded) of PbTe in the Pb-Te-I chemical potential space. (b,c) Defect diagrams (with formation energies of all intrinsic defects) calculated at chemical potentials corresponding to (b) PbTe-PbI₂-Pb and (c) PbTe-PbI₂-Te equilibria. The equilibrium Fermi levels ($E_{F,eq}$) at 973 K are included in both defect diagrams. The gray region represents the conduction band, and the calculated band gap (E_g) and conduction band minimum (CBM) are labelled in (b). Iodine interstitials are not shown in the plot, because they have very high formation energies (\sim 5 eV) in the shown chemical potential space.