Supporting Information for

Progress in Air-Processed Perovskite Solar Cells: From Crystallization

to Photovoltaic Performance

Yuanhang Cheng,^{abc} Franky So *d and Sai-Wing Tsang*abc

^{a.} Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China

^{b.} Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P.R. China.

^{c.} City University of Hong Kong Shenzhen Research Institute, Shenzhen, P. R. China.

^{d.} Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.

Table S1 The details device structure, fabrication conditions, device area, and photovoltaic parameters of OHP solar cells listed in Figure 9.

Lab-scale OHP solar cells										
Device Structure	Method for	Processing	Device Area	Jsc	Voc	FF	PCE			
	perovskite	Environment	(cm²)	(mA/cm²)	(V)	(%)	(%)	Ref		
FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ (Dye-sensitized solar cell)	Spin-coating	/	0.24	11.0	0.61	0.57	3.81	[3]		
$FTO/TiO_2/CH_3NH_3PbI_3$ (Dye-sensitized solar cell)	Spin-coating	/	0.309	15.82	0.706	0.59	6.54	[97]		
FTO/TiO ₂ /CH ₃ NH ₃ Pbl ₃ /Spiro- MeOTAD/Au	Spin-coating & dip coating	Glovebox	0.209	21.3	1.00	0.66	14.1	[10]		
FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ /PTAA /Au	Spin-coating	Glovebox	0.16	21.3	1.04	0.73	16.2	[98]		
FTO/TiO ₂ /(FAPbl ₃) ₁ . _x (MAPbBr ₃) _* /PTAA/Au	Spin-coating	Glovebox	0.16	24.6	1.06	0.77	20.1	[99]		
FTO/TiO ₂ /FAPbI ₃ /PTAA/Au	Spin-coating	Glovebox	0.0946	25.0	1.1	0.80	22.1	[10]		
ITO/SnO ₂ /FA _{1-x} MA _x Pbl ₃ /PEAI/Spiro- OMeTAD/Au	Spin-coating	Glovebox	0.108	25.2	1.18	0.78	23.3	[100]		
/	/	/	/	/	/	/	24.2*	[10]		
FTO/TiO ₂ /CH ₃ NH ₃ PbI _{3-X} Cl _x /P3HT/Ag	Spin-coating	In air with RH 50%	0.09	18.85	0.64	0.41	5.67	[90]		
FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ /Carbon/PANI	Spin-coating	In air	/	13.6	0.65	0.45	4.00	[92]		
FTO/TiO2/CH3NH3PbI3/ Spiro- OMeTAD/Ag	Low-pressure chemical vapor deposition	In air with RH 60%	0.12	21.7	0.91	0.65	12.73	[91]		
FTO/TiO ₂ /CH ₃ NH ₃ PbI _{3-x} (SCN) _x / Spiro- OMeTAD/Au	Spin-coating	In air with RH 70%	/	21.1	0.96	0.75	15.12	[54]		
FTO/TiO ₂ /CH ₃ NH ₃ Pbl ₃ / Spiro- OMeTAD/Au	Spin-coating	In air with RH 35%	0.1256	19.01	1.04	0.73	14.55	[51]		
FTO/TiO ₂ /CH ₃ NH ₃ Pbl ₃ / Spiro- OMeTAD/Au	Multi-flow air knife	In air with RH 40%	0.1	23.50	1.09	0.69	17.71	[93]		
ITO/PolyTPD/ CH ₃ NH ₃ PbI ₃ /C ₆₀ /BCP/Ag	Spin-coating	In air with RH 70%	0.1	23.03	1.05	0.75	18.1	[33]		
ITO/m- PEDOT:PSS/CH ₃ NH ₃ PbI ₃ /PCBM/Ca/Al	Blowing assisted drop- casting	In air	0.1	22.64	1.11	0.77	19.48	[59]		
ITO/ZnO/CH₃NH₃PbI₃/ Spiro- OMeTAD/Ag	Spin-coating	In air with RH 55- 65%	0.04	22.17	1.07	0.77	18.34	[52]		
ITO/PolyTPD/ CH ₃ NH ₃ PbI ₃ /C ₆₀ /BCP/Ag	Spin-coating	In air with RH 70%	0.1	23.36	1.00	0.67	15.56	[50]		
FTO/TiO ₂ / Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95} Pb(I _{0.83} Br _{0.17}) ₃ /Spiro- OMeTAD/Au	Spin-coating	In air with RH 20- 35%	0.25	23.6	1.14	0.77	20.8	[44]		
ITO/SnO ₂ /MAPbl ₃ /Spiro-OMeTAD/Au	Air blading	In air	0.09	23.46	1.09	0.79	20.08	[94]		
ITO/SnO ₂ /MAPbl ₃ /Spiro-OMeTAD/Au	Air blading	In air with RH 60%	0.1	22.97	1.06	0.80	19.39	[95]		
ITO/SnO ₂ / Cs _{0.21} FA _{0.56} MA _{0.23} (I _{0.98} Br _{0.02}) ₃	Spin-coating	In air with RH 40%	/	23.37	1.11	0.71	18.38	[96]		

/Spiro-OMeTAD/Ag											
Air processed large-scale OHP solar cells											
ITO/PEDOT:PSS/ CH ₃ NH ₃ PbI ₃ . "Cl _x /PCBM/Ca/Al	Spray coating	In air	/	16.8	0.92	0.72	11.1	[63]			
FTO/TiO ₂ / CH ₃ NH ₃ PbI _{3-x} Cl _x / Spiro- OMeTAD/Ag	Spray coating	In air	0.065	20.6	1.03	0.62	13	[58]			
FTO/TiO ₂ / CH ₃ NH ₃ Pbl ₃ / Spiro- OMeTAD/Au	Spray coating	In air	1	18.59	1.03	0.68	13.09	[66]			
FTO/TiO ₂ /ZrO ₂ / (5-AVA) _x (MA) ₁ . _x Pbl ₃ /Carbon	Printing	In air	0.5	22.8	0.86	0.66	12.8	[101]			
FTO/TiO ₂ /ZrO ₂ /Carbon/MAPbI ₃ (module)	Printing	In air	70	1.77	9.63	0.63	10.74	[103]			
FTO/compact-TiO ₂ / (meso-TiO ₂ /meso-ZrO ₂ /meso-carbon)/ (5-AVA) _x (MA) _{1-x} PbI ₃ (module)	Printing	In air	49	2.0	9.3	0.56	10.4	[56]			
FTO/TiO ₂ /Cs _{0.1} (FA _{0.83} MA _{0.17}) _{0.9} Pb(I _{0.83} Br _{0.17}) ₃ /Spiro-OMeTAD/Au	Printing	In air with RH 45%	0.09	21.5	1.06	0.67	15.3	[104]			
ITO/ZnO/MAPbl ₃ /P3HT/Ag	Slot-die	In air with RH 30- 40%	0.1	20.38	0.98	0.60	11.96	[71]			
ITO/ZnO/MAPbl ₃ / Bifluo- OMeTAD/MoO _s /Ag	Slot-die	In air with RH 30- 40%	0.1	19.7	1.1	0.68	14.7	[105]			
ITO/ZnO/MAPbI ₃ /P3HT/MoO _x /Ag	Slot-die	In air	0.1	17.21	1.1	0.67	12.7	[106]			
FTO/TiO ₂ / CH ₃ NH ₃ Pbl ₃ / Spiro- OMeTAD/Au	Doctor blading	In air	10.1	4.3	4.11	0.58	10.3	[107]			
FTO/Graphene-TiO ₂ / CH ₃ NH ₃ PbI ₃ / Spiro- OMeTAD/Au (module)	Doctor blading	In air	50.6	2.26	8.57	0.65	12.6	[108]			
FTO/TiO ₂ -PCBM/ CH ₃ NH ₃ PbI ₃ / Spiro- OMeTAD/Au	Doctor blading	In air with RH 10- 20%	1.2	21.38	1.11	0.73	17.33	[109]			
ITO/NiO _x /MAPbI ₃ /PC ₆₁ BM/Ag	Doctor blading	In air with RH 40%	0.09	17.6	1.02	0.61	10.92	[110]			
ITO/PEDOT:PSS/CH3NH3PbI3xClx /PCBM/ZnO/Ag	R2R	In air	0.5	13.7	0.98	0.33	5.1	[111]			
PET/TCO/ZnO/FA _{0.4} MA _{0.6} PbI ₃ /PEDOT/Mo O ₃ /Ag	R2R	In air with RH 30- 40%	0.1	19.6	1.04	0.54	11.0	[112]			
ITO/m- PEDOT:PSS/CH ₃ NH ₃ PbI ₃ /PCBM/Ca/Al	R2R	In air with RH 45%	0.1	17.39	0.99	0.65	11.16	[59]			

*The certified PCE obtained from NREL Efficiency chart, https://www.nrel.gov/pv/cellefficiency.html, Access on April 17, 2019

Reference

[3] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, *Journal of the American Chemical Society*, 2009, **131**, 6050-6051.

[10] NREL Efficiency chart, https://www.nrel.gov/pv/cell-efficiency.html, Access on April 17, 2019.
[33] Y. Cheng, X. Xu, Y. Xie, H.-W. Li, J. Qing, C. Ma, C.-S. Lee, F. So and S.-W. Tsang, Solar RRL, 2017, 1, 1700097.

[44] T. Singh and T. Miyasaka, Advanced Energy Materials, 2018, 8, 1700677.

[50] X. Xu, C. Ma, Y.-M. Xie, Y. Cheng, Y. Tian, M. Li, Y. Ma, C.-S. Lee and S.-W. Tsang, Journal of Materials Chemistry A, 2018, 6, 7731-7740.

[51] J. Huang, X. Yu, J. Xie, D. Xu, Z. Tang, C. Cui and D. Yang, ACS applied materials & interfaces, 2016, 8, 21505-21511.

[52] W.-T. Wang, J. Sharma, J.-W. Chen, C.-H. Kao, S.-Y. Chen, C.-H. Chen, Y.-C. Feng and Y. Tai, Nano Energy, 2018, 49, 109-116.

[54] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan and F. Yan, Nature communications, 2016, 7, 11105.

[56] Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li and H. Han, Solar RRL, 2017, 1, 1600019.

[58] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan and K. Xiao, ACS Photonics, 2015, 2, 680-686.

[59] C. Zuo, D. Vak, D. Angmo, L. Ding and M. Gao, Nano Energy, 2018, 46, 185-192.

[63] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley and D. G. Lidzey, Energy & Environmental Science, 2014, 7, 2944-2950.

[66] H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo and Q. Meng, Nano Energy, 2016, 27, 352-358.

[71] K. Hwang, Y.-S. Jung, Y.-J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D.-Y. Kim and D. Vak, *Advanced Materials*, 2015, **27**, 1241-1247.

[90] M. Seetharaman S, P. Nagarjuna, P. N. Kumar, S. P. Singh, M. Deepa and M. A. G. Namboothiry, Physical Chemistry Chemical Physics, 2014, 16, 24691-24696.

[91] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng and Y. Lu, ACS applied materials & interfaces, 2015, 7, 2708-2714.

[92] P. Bhatt, K. Pandey, P. Yadav, B. Tripathi, C. K. P, M. K. Pandey and M. Kumar, Solar Energy Materials and Solar Cells, 2015, 140, 320-327.

[93] L.-L. Gao, C.-X. Li, C.-J. Li and G.-J. Yang, Journal of Materials Chemistry A, 2017, 5, 1548-1557.
[94] J. Ding, Q. Han, Q.-Q. Ge, D.-J. Xue, J.-Y. Ma, B.-Y. Zhao, Y.-X. Chen, J. Liu, D. B. Mitzi and J.-S. Hu, Joule, 2019, 3, 402-416.

[95] R. Cheng, C.-C. Chung, H. Zhang, Z. Zhou, P. Zhai, Y.-T. Huang, H. Lee and S.-P. Feng, Small, 2019, 15, 1804465.

[96] K. Huang, H. Li, C. Zhang, Y. Gao, T. Liu, J. Zhang, Y. Gao, Y. Peng, L. Ding and J. Yang, Solar RRL, 2019, 3, 1800318.

[97] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, *Nanoscale*, 2011, **3**, 4088-4093.

[98] S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo and S. I. Seok, Energy & Environmental Science, 2014, 7, 2614-2618.

[99] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.

[100] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Nature Photonics, 2019, DOI: 10.1038/s41566-019-0398-2.

[101] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han, Science, 2014, 345, 295-298.

[103] A. Priyadarshi, L. J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T. C. Sum, N. Mathews and S. G. Mhaisalkar, Energy & Environmental Science, 2016, 9, 3687-3692.

[104] F. Mathies, H. Eggers, B. S. Richards, G. Hernandez-Sosa, U. Lemmer and U. W. Paetzold, ACS Applied Energy Materials, 2018, 1, 1834-1839.

[105] T. Qin, W. Huang, J.-E. Kim, D. Vak, C. Forsyth, C. R. McNeill and Y.-B. Cheng, Nano Energy,

2017, 31, 210-217.

[106] J.-E. Kim, Y.-S. Jung, Y.-J. Heo, K. Hwang, T. Qin, D.-Y. Kim and D. Vak, Solar Energy Materials and Solar Cells, 2018, 179, 80-86.

[107] S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A. L. Palma, S. Casaluci, P. Cameron, A. D'Epifanio, S. Licoccia, A. Reale, T. M. Brown and A. Di Carlo, Journal of Power Sources, 2015, 277, 286-291.

[108] A. Agresti, S. Pescetelli, A. L. Palma, A. E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso and A. Di Carlo, ACS Energy Letters, 2017, 2, 279-287.

[109] M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest and K. Zhu, Nature Energy, 2017, 2, 17038.

[110] Y. Peng, Y. Cheng, C. Wang, C. Zhang, H. Xia, K. Huang, S. Tong, X. Hao and J. Yang, Organic Electronics, 2018, 58, 153-158.

[111] Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs and H. Chen, Journal of Materials Chemistry A, 2015, 3, 24254-24260.

[112] Y.-J. Heo, J.-E. Kim, H. Weerasinghe, D. Angmo, T. Qin, K. Sears, K. Hwang, Y.-S. Jung, J. Subbiah, D. J. Jones, M. Gao, D.-Y. Kim and D. Vak, Nano Energy, 2017, 41, 443-451.