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S1 DNA Sequences

DNA oligonucleotides are ordered from IDT with a 5’ Dibenzocyclooctyne (DBCO) modifica-

tion and with HPLC purification. The specific sequence used for the experiments presented

in this article is self-complementary (5’ - /5DBCOTEG/ - (T16) - CGCG - 3’).
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Figure S1: Plot of a typical theoretical singlet fraction curve for DNA-coated particles,
calculated using the method described in Ref. S1.
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S2 Functionalizing particles with DNA

To functionalize the particles, we use a modified version of the protocol from Ref. S2. We

modify PS-b-PEO with an azide group as described in the reference. We then mix 240 µL of

417 µM PS-b-PEO-N3 in deionized (DI) water with 120 µL Tetrahydrofuran (THF, Sigma)

and 3 µL toluene (anhydrous, Sigma-Aldrich) saturated with dye (Oil Blue N, 96%, Sigma-

Aldrich or Oil Red O, BSC certified, Sigma-Aldrich). Finally we add 40 µL of 1 µm sulfate-

modified polystyrene particles (Molecular Probes) that have been washed into 1x TE buffer,

suspended to 10% v/v, and sonicated. The suspension is shaken at room temperature for

30 min. After shaking, an excess of DI water is added to the suspension to decrease the

fraction of THF below 10%. We then heat the suspension to 70 ◦C for 1 h to evaporate the

THF. The azide functionalized particles (PS–PS-b-PEO-N3) are then washed several times

in DI water.

Any dye that is soluble in toluene and polystyrene but insoluble in water can be used

to dye particles in this way. The absorption spectra for the two dyes used in this paper are

shown in Figure S2. The two dyes are suspended in toluene at 0.066% of the concentration

at which the dye begins to precipitate, and their spectra are collected on a NanoDrop UV-

Visible Spectrometer (Thermo Fisher Scientific, ND-1000).
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Figure S2: Plot of the absorption spectra of Oil Red O and Oil Blue N dyes in toluene. The
regions of illumination for red and green light are shown shaded in grey.

To attach the ssDNA to the PS–PS-b-PEO-N3 we mix 10 µL of 70 µM DBCO-modified

ssDNA (IDT), 40 µL of PS–PS-b-PEO-N3 (1% v/v), and 150 µL aqueous buffer containing
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10 mM Tris and 1 mM EDTA (diluted to 1x TE from Serva TE Buffer (100x), pH 8) as well

as 0.05% Pluronic F 127 (BASF) and 1 M NaCl. The solution is shaken for 24 h after which

the mixture is washed with 1x TE several times.

S3 Sample Preparation

To prevent oxidative damage to the DNA on the particles during illumination, we add a

Glucose Oxidase/Catalase enzyme system that scavenges oxygen from the solution follow-

ing the procedure in Ref. S3 (Section 3.2.3, pg 17). We mix 8 µL 1x TE with 625 mM

NaCl, 1 µL Glucose Oxidase/Catalase Stock (125 mM NaCl, 20 mg/mL Glucose Oxidase

(from Apsergillus niger, Type VII, lyophilized powder, Sigma) and 3.5 mg/mL Catalase

(Lyophilized, Spectrum) in 1x TE), and 0.1 µL 340 nm carboxylate-modified latex particles

(Opti-Link, Thermo) and leave to react for 15 min. We separately prepare a 30 µL suspen-

sion of 0.1% v/v PS–PS-b-PEO-DNA particles at 500 mM NaCl in 1x TE. We then add 1

µL 450 mg/mL D(+) Glucose (99.5%, Sigma) in DI water to our solution containing Glucose

Oxidase/Catalase. We add 0.6 µL of the resulting solution to the particle suspension.

We sprinkle 10–30 µm glass spacer beads (Polysciences) onto a 24× 60 mm No. 1 coverslip

and then plasma clean that and a 22 × 22 mm No. 1 coverslip for 45 s. We place 20 µL of

the final solution onto the 24 × 60 No. 1 coverslip and gently cover with the 22 × 22 No. 1

coverslip, taking care to avoid trapping bubbles. We wick away the excess solution with a

Kimwipe and seal the edges with UV-curable optical adhesive (Norland 63). Finally we cure

the sample under UV for 5 min, keeping the center of the sample covered with aluminum

foil.

S4 Imaging

The methods used to heat and image are described in Refs. S4 and S1. Wide-field, wavelength-

dependent illumination is provided by a Lumencor Spectra-X light engine. The illumination
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power at the sample, as measured with a power meter at the back aperture of the objective,

is 95 mW for green light (560/32 nm), 21.7 mW for red light (648 nm), and 32 mW for

blue light (485/25 nm). The light is incident on an area of approximately (100 µm)2 at the

sample. For experiments comparing the response of samples illuminated with both red and

blue light (see Figure 5), we make the illumination intensities the same by decreasing the

power of the blue light to match that of the red light source.

S5 Calculating heat profiles

Temperature profiles for a heated polystyrene bead are calculated following the method

in Ref. S5. We assume a single bead in an infinite medium of water that perfectly absorbs

3 MW/m2 (which corresponds to the approximate true illumination intensity) of light, which

it then perfectly radiates as heat.

The time-dependent results for the change in temperature T above the background are

T =
a2A
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]
(2)

if r ≥ a. Here a is the particle radius (0.5 µm), Ks is the thermal conductivity of polystyrene

(0.4 W/m/K), Kw is the thermal conductivity of water (0.6 W/m/K), ρs is the density of

polystyrene (1055 kg/m3), ρw is the density of water (1000 kg/m3), cvs is the heat capacity
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of polystyrene (1300 J/kg/K),S6 cvw is the heat capacity of water (4185.5 J/kg/K), ks is the

thermal diffusivity of polystyrene (ks = Ks/(ρsc
v
s)), kw is the thermal diffusivity of water

(kw = Kw/(ρwc
v
w)), A is the heat generated in the particle per unit volume per unit time

(4.5 TW/m3 assuming 10% of light incident on the 1 µm particle is absorbed and perfectly

re-radiated as heat) and

b =
Kw

Ks

√(
ks
kw

)
c = 1− Kw

Ks

γs =
a2

ks

σ =
(r
a
− 1
)√ ks

kw
.

(3)

The steady-state results are

T =
a

6Ks

(
a2 − r2 + 2a2

Ks

Kw

)
(4)

if r ≤ a, and

T =
Aa3

3Kwr
(5)

if r ≥ a. A plot of the steady-state result is shown in Figure S3. The time-dependent

equations predict that for the conditions given above, the temperature should reach 99% of

the steady-state value within 5 ms. The same equations predict that a 10 µm particle should

take 1 s to reach steady state, but only 1 µs to heat by 1 ◦C.

S6 Aggregation and diffusion time

In Figure 2 of the main text, we show the expansion of a cluster of particles exposed to

light for 5 s. We then compare the observed expansion with the estimated expansion from a
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Figure S3: Theoretical calculation of the steady-state temperature profile of a dyed 1 µm
polystyrene particle in an infinite medium of water under exposure to light that the dye
absorbs. The amount of heating depends on the power of illumination and the absorptivity
of the dye in the wavelength used.

diffusion model:S7,S8

〈
x2
〉

= 6Dt

D(T ) =
kBT

6πηa

η(T ) = 2.414× 10−5 Pa · s 10247.8 K/(T−140 K) ,

(6)

where η is the viscosity of water, D is the diffusion coefficient, a is the particle radius (0.5

µm), k is the Boltzman constant (1.38×10−23 m2 kg/(s2 K)), and T is the temperature (318

K).

To calculate the expected time for a cluster of particles to aggregate, as shown in Figure 2a

(last three panels), we assume that the limiting timescale is that for the particles on the outer

edge of the cluster to diffuse inward and bind to those in the center. We estimate this distance

to be 10 µm by examining the third and last frames of Figure 2a. We then use Equations 6

to calculate the average time required to diffuse this distance.
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S7 Dimer melting experiments and analysis

For the dimer melting experiments, we make a sample as described in Section S3, except

that we use 2 µm particles to increase the amount of heating per particle, we work at lower

volume fraction, and we make the sample quasi-two-dimensional. To do this, we forgo the

use of spacer beads, place only 10 µL of sample on the slide, and squeeze the two slides

together using binder clips while curing the epoxy.

To make the sample, we mix 38 µL 1x TE with 263 mM NaCl and 0.1% F127, 1 µL

Glucose Oxidase/Catalase stock, and 0.1 µL 340 nm carboxyl-modified latex particles and

wait 15 min. We separately prepare an 18 µL suspension of 0.05% v/v PS–PS-b-PEO-

DNA particles at 250 mM NaCl in 1x TE and place the suspension in a 55 ◦C water bath

to keep the particles from aggregating. We then add 1 µL glucose stock to the Glucose

Oxidase/Catalase solution and 2 µL of the resulting mixture to the particle suspension.

We place this sample on the heating stage and image it as described above. We bring

the sample to just above the melting temperature and then use optical tweezers (785 nm) to

drag approximately 20 single particles to an empty space in the sample. We then lower the

temperature to approximately 10 ◦C below the melting temperature and assemble the single

particles into dimers in a 3 by 3 grid with as much space between the dimers as possible

within the field of view (see Figure S4). We then raise the temperature to 3 ◦C below the

temperature at which most dimers break apart within a few seconds, even in the absence of

illumination.

We use a CMOS Photon Focus camera with the frame rate set to 50 frame/s with an

exposure time of 13.336 ms. We trigger the Lumencor light source with a square pulse of a

given length (5 ms to 200 ms) with a period of 1 s. We record for 3000 frames (60 pulses).

The light source and camera are not synchronized.

We repeat the experiment 9 times at each pulse length on the same set of 9 dimers. We

rebuild the dimers using the optical tweezers between each experiment.

We post-process the micrographs to locate dimers and determine how many dimers break
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Figure S4: Three by three grid of dimers used to measure the response to different length
pulses of light.

after a given light pulse using TrackPy,S9 an open-source software package that is based on

the Crocker-Grier centroiding algorithm.S10 To set the TrackPy parameters, we identify par-

ticles in micrographs of dimers well below the melting temperature. We plot the particle

positions from TrackPy on top of the micrographs and verify their locations by eye. By

iterating over a range of TrackPy parameters, we optimize the particle positions while elim-

inating points that TrackPy falsely identifies as particles. We then use TrackPy to locate

particles in space and time for the duration of the movie. TrackPy assigns each particle a

unique identification number that allows us to associate particles between frames.

To identify which particles are bound together, we locate the particles and then classify

particles as bound or unbound using a cutoff distance db. Particles that are less than db

apart are said to be bound. We run the analysis for several different cutoff distances (see

Figure S5).

We use a cutoff distance of db = 20.75 pixels (2.21 µm) for the analysis presented in

the main text. This value is chosen by tracking dimers that are well below their melting

temperature and measuring the distribution of interparticle separations at each of the over

3000 frames (see Figure S6). The 3σ value is 20.75 pixels or, equivalently, 2.21 µm.
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Figure S5: Analysis of dimer breaking probabilities at different particle separation cutoffs.
Error bars correspond to a 1-σ credible interval. See also Figure 4 of the main text.
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Figure S6: Distance between particles that are bound in dimers. Occurrences are counted
over 3000 frames. The histogram is overlaid with a kernel density estimation (blue line),
and fit to a Gaussian with the form a exp (x− xo)2/(2w)2 (black line). The fit values are
a = 1.1466, xo = 19.6825, w = 0.3560.

S-9



For each movie, we identify the frame before the ith light pulse (finit,i) by eye. We cal-

culate the separation between all pairs of particles in this frame and identify which particles

are bound to only one other particle. This pair of particles is classified as a dimer; it is

uniquely identified by the constituent particles’ identification numbers.

To determine whether these dimers break, we calculate their interparticle distances for

all frames in the movie after the ith pulse and before the (i + 1)th pulse. If the particle

separation ever exceeds the cutoff distance db, we count the dimer as unbound. We repeat

this procedure for every light pulse i in the movie.

We discard the frames when the light pulse is visible by eye because the images become

saturated and the particle center tracking is unreliable. Thus, the total time we watch

the dimers varies with the pulse length, with longer pulse lengths being analyzed for fewer

frames. As a result, we may underestimate the number of breaking events at longer pulse

lengths.

To show that the system is not heating over the course of each experiment, we plot the

number of dimers present in the system before each light pulse for a movie containing 60

light pulses (see Figure S7). We see dimers re-forming after some of the pulses, and there is

little evidence for long-term drift.
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Figure S7: Number of dimers ni present immediately preceding each pulse i, plotted for 3
different movies, recorded for 100 ms pulses with a cutoff distance of 2.21 µm.

To extract a timescale for how quickly the light modulates the interactions, we infer the

probability Pb (plus uncertainty) of a dimer breaking anytime after the pulse and before the

next. Then, by plotting Pb as a function of pulse width, we can determine what pulse widths
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have an effect on the melting of the dimers. We calculate the uncertainty on Pb to determine

at what pulse width the effect becomes statistically significant.

We therefore determine the posterior probability distribution

p(Pb | D, db) , (7)

where D = {(b1, n1), (b2, n2), . . . , (bl, nl)}, ni is the number of dimers present immediately

before light pulse i, bi is the number of dimers that break between pulse i and i + 1, and l

is the total number of pulses in all the movies for a particular pulse width. The posterior

probability distribution gives us all of the information that the data contain about Pb, given

our assumptions.

From Bayes’s rule, the posterior probability is related to the product of the prior proba-

bility p(Pb) and the likelihood function p(D | Pb, db):

p(Pb | D, db) =
p(Pb) p(D | Pb, db)

p(D | db)
, (8)

where the denominator is a normalization factor. We retain the db on the right side of the

“given” symbol (|) because our calculations are conditioned on the threshold we choose.

We use a uniform prior for Pb; that is,

p(Pb) =


1 0 < Pb < 1

0 otherwise .

This prior represents complete ignorance of Pb. We choose this prior because we don’t have

a good estimate of Pb before doing the experiment: even with no light pulses, Pb depends

on many variables that are not precisely measured, such as the volume fraction of dimers in

the system and the interaction between the particles at the temperature of the experiment.

We assume that all the measurements are independent. That is, each dimer breaks
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(or does not break) independently of the others in a given pulse. Also, we assume no

correlation between the measured fraction of broken dimers at pulse i and that at pulse

j. We also assume that each pair of particles has the same interaction potential. In the

actual experiment, there may be some heterogeneity in the interaction potential, such that

the dimers that don’t melt on a given pulse are those with a stronger interaction. We do not

account for such heterogeneity in this simple estimation procedure.

With these assumptions, we can write down a likelihood function for the number of

broken dimers after one pulse. The likelihood is a binomial distribution, since there are two

possible outcomes for each dimer (broken or not broken), and each dimer is independent:

p(bi, ni | Pb, db) =
ni!

bi! (ni − bi) !
Pb

bi (1− Pb)ni−bi . (9)

Since each measurement at each pulse is independent, the likelihood of the entire data set

(all the pulses in all the movies at a given pulse width) is the product of likelihood functions

for a single pulse:

p(D | Pb, db) =
l∏

i=1

p(bi, ni | Pb, db). (10)

Because we have a uniform prior, the posterior probability distribution is proportional

to the likelihood function:

p(Pb | D, db) ∝ p(D | Pb, db). (11)

Substituting our expression for the likelihood function into the above equation, we obtain

p(Pb | D, db) ∝
l∏

i=1

ni!

bi! (ni − bi) !
Pb

bi (1− Pb)ni−bi . (12)

We can then group terms in the product:

p(Pb | D, db) ∝

[
l∏

i=1

ni!

bi! (ni − bi) !

]
Pb

∑
i bi (1− Pb)

∑
i ni−bi . (13)
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The term in brackets is a constant that depends only on the data. We ignore it because it

becomes part of the normalization factor. If we then define

Sb =
l∑

i=1

bi (14)

and

Snb =
l∑

i=1

(ni − bi), (15)

the posterior probability becomes

p(Pb | D, db) ∝ Pb
Sb (1− Pb)Snb . (16)

This posterior probability distribution is a beta distribution. The beta distribution of x,

0 < x < 1, has two parameters, α and β, where α, β > 0:

p(x | α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1. (17)

Here Γ is the gamma function, x = Pb, α = Sb + 1, and β = Snb + 1.S11

We can analytically calculate the best estimate for Pb, P̂b, and the uncertainty on that

estimate from the known properties of the beta distribution. There are several possible

choices for our estimator: we might use the mean of the distribution, its maximum (or

mode), or its median. We choose the mean for our estimate and the standard deviation to

characterize the uncertainty because there are analytical formulas for both. First, though,

we note that the mean can be different from the maximum value of the distribution (the

maximum a posteriori value or MAP, or mode) which is:S12

MAP =
α− 1

α + β − 2
=

∑l
i=1 bi∑l
i=1 ni

=
Sb
Sn
, (18)
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where

Sn =
l∑

i=1

ni. (19)

The MAP value makes sense as an estimate of Pb: it is the total number of dimers that break

divided by the total number of dimers. But because the beta distribution can be skewed,

the mean value need not correspond to the MAP. The mean value, which we will use as our

estimate P̂b, has the formS11

P̂b =
α

α + β
=

1 +
∑l

i=1 bi

2 +
∑l

i=1 ni
=

1 + Sb
2 + Sn

. (20)

If the sums are large, there is little difference between the MAP and the mean. The advantage

of using the mean is that we can use an analytical formula for the variance to estimate the

uncertainty about the mean. The variance is:S12

σ2
Pb

=
αβ

(α + β)2(α + β + 1)
=

(1 + Sb)(1 + Snb)

(2 + Sn)2(3 + Sn)
. (21)

Thus, we estimate the uncertainty from the limits of a 1-σ credible interval. The interval

is

(P̂b − σPb
) < P̂b < (P̂b + σPb

). (22)

S8 Movies

Movie S1: Optical video of an aggregate of 1 µm particles infiltrated with Oil Red O dye. The

aggregate is held at a background temperature of 45 ◦C (3 ◦C below its melting temperature)

and is exposed intermittently to 560 nm light (depicted by green border). The scale bar is

10 µm. This movie corresponds to the still frames from Figure 2 in the main text.
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