Electronic Supplementary Information

Highly Stable and Spectrum-Selective Ultraviolet Photodetectors Based on Lead-Free Copper-Based Perovskites

Ying Li,^a Zhifeng Shi,^{*a} Wenqing Liang,^a Lintao Wang,^a Sen Li,^a Fei Zhang,^a Zhuangzhuang Ma,^a Yue Wang,^a Yongzhi Tian,^a Di Wu,^a Xinjian Li,^{*a} Yuantao Zhang,^b Chongxin Shan,^{a,c} and Xiaosheng Fang^{*d}

^aKey Laboratory of Materials Physics of Ministry of Education, Department of Physics and

Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China

Email: shizf@zzu.edu.cn, lixj@zzu.edu.cn

^bState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and

Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, China

°State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine

Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

^dDepartment of Materials Science, Fudan University, Shanghai 200433, China

Email: xshfang@fudan.edu.cn

Fig. S1 EDS spectra of the $Cs_3Cu_2I_5$ films.

Fig. S1 presents the EDS spectrum of the as-prepared $Cs_3Cu_2I_5$ films. No other chemical impurities were detected in the resulting sample except for the well-known compositions, and the corresponding atomic ratio is close to the stoichiometric ratio of $Cs_3Cu_2I_5$ material.

Fig. S2 (a) XPS results of $Cs_3Cu_2I_5$ films and the high-resolution spectra of (b) Cs 3d, (c) Cu 2p, and (d) I 3d.

Fig. S3 Transmission spectrum of the $Cs_3Cu_2I_5$ films.

Fig. S4 Absorption spectra of the $Cs_3Cu_2I_5$ films, GaN layer, and the $Cs_3Cu_2I_5$ /GaN hybrid.

Fig. S5 (a) PL decay curves of the $Cs_3Cu_2I_5$ films as a function of temperature. (b) Temperaturedependent PL lifetime of the $Cs_3Cu_2I_5$ films.

Fig. S6 Heating/cooling cycling PL measurements of the Cs₃Cu₂I₅ films (cycle 3).

Fig. S7 Thermogravimetric analysis data of the $Cs_3Cu_2I_5$ films.

Fig. S8 Steady-state PL spectra of the $Cs_3Cu_2I_5$ films recorded under continuous UV light excitation (265 nm, 3.0 mW/cm²) for 8 h.

Fig. S9 UPS data of the $Cs_3Cu_2I_5$ films.

UPS measurements were performed to determine the valence band maximum of $Cs_3Cu_2I_5$ films, and the value can be obtained by the following formulas

$$E_{VBM} = hv - E_{cutoff} + E_{Fermi} \tag{1}$$

$$E_{CBM} = E_{VBM} + E_g \tag{2}$$

in which hv is the ultraviolet radiation energy (21.22 eV), E_{cutoff} is the binding energy of the secondary cutoffs in the spectra, and E_{Fermi} is the difference between the VBM and the Fermi level. The calculated value of E_{VBM} is 5.65 eV, and the value of E_{CBM} is 1.85 eV.

Fig. S10 *I*–*V* characteristics of In and Au electrodes on GaN and Cs₃Cu₂I₅, respectively.

Fig. S11 Two thousand response cycles showing the good reversibility of the $Cs_3Cu_2I_5/GaN$ heterojunction device.

Fig. S12 Noise current of the photodetector as a function of frequency measured by a lock-in amplifier.

Fig. S13 (a) Schematic illustration of the photodetector to measure the photoresponse speed. Photoresponse characteristics of the Cs₃Cu₂I₅/GaN heterojunction device to pulsed light irradiation at the frequencies of (b) 1 Hz, (c) 800 Hz, and (d) 5 kHz under a voltage of 0 V. (e) The relative balance $[(I_{max}-I_{min})/I_{max}]$ versus switching frequency. (f) Rising and falling edges for estimating the rise time (t_r) and the fall time (t_f) at 5 kHz.

Fig. S14 (a, b) SEM images of the $Cs_3Cu_2I_5$ films before and after heating at 373 K for 12 h. (c) XRD patterns of the $Cs_3Cu_2I_5$ films before and after heating at 373 K for 12 h. (d) PL spectra of the $Cs_3Cu_2I_5$ films before and after heating at 373 K for 12 h.

Fig. S15 (a) Temporal photoresponse curves of the device after aging for 12 h at 293 and 353 K, and after naturally cooling to 293 K. (b) Temporal photoresponse curves of the device after aging for 12 h at 293 and 393 K, and after naturally cooling to 293 K.

Samples	$ au_{\mathrm{ave.}}\left(\mathrm{ns} ight)$	τ_1 (ns)	τ_2 (ns)	Percent (τ_1)	Percent (τ_2)
Cs ₃ Cu ₂ I ₅	794.2	80.5	815.5	23.2%	76.8%
Cs ₃ Cu ₂ I ₅ /GaN	502.6	38.7	517.6	30.2%	69.8%

Table S1 Fitting parameters of the PL decay curves for $Cs_3Cu_2I_5$ and $Cs_3Cu_2I_5$ /GaN hybrid

Material	Conductivity type	Resistivity (Ω·cm)	Carrier concentration (cm ⁻³)
Cs ₃ Cu ₂ I ₅	р	5×10^3	$4.3 imes 10^{15}$
GaN	n	0.01	5.9×10^{18}

Table S2 Electrical properties of the $Cs_3Cu_2I_5$ films and GaN