Supplementary Information

Giant Spin Seebeck Effect through an Interface Organic Semiconductor

V. Kalappattil^{‡,a}, R. Geng^{‡,b}, R. Das^{‡,a}, M. Pham^b, H. Luong^b, T. Nguyen^{*,b}, A. Popescu^a, L.M. Woods^a, M. Kläui^c, H. Srikanth^{*,a}, and M.H. Phan^{*,a}

^aDepartment of Physics, University of South Florida, Tampa, Florida 33620, USA.

^bDepartment of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.

^cInstitute of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.

* phanm@usf.edu (M.H.P); ngtho@uga.edu (N.D.T.); sharihar@usf.edu (H.S.).

S1. Anomalous Nernst effect measurement on the YIG/C₆₀ structure

Fig. S1. ISHE voltage vs. magnetic field data taken at 300 K for the YIG/C_{60} and $YIG/C_{60}/Pt$ structures.

We tested Anomalous Nernst effect (ANE) in the YIG/C₆₀ structure, as shown in Fig. S1. It can be seen that the ANE signal is very weak and noisy. Also the low field anomaly of the V_{LSSE} vs. *H* curves observed in Figure 4a and b (also included in Fig. S1 for comparison) is due to the surface anisotropy of YIG. Since there is no anomalous Nernst effect present in YIG/C₆₀, the V_{LSSE} signals we have observed in YIG/C₆₀/Pt are dominated by the LSSE.

S2. ISHE voltage vs. magnetic field measurements on the C₆₀/Pt structure

To test if there is any considerable contribution to the LSSE (the V_{ISHE} signal obtained from Pt layer) from the Pt/C₆₀ surface, we have fabricated two reference samples of SiO₂/Au (100 nm)/C₆₀ (5 nm) / Pt (5 nm) and SiO₂/Ag (100 nm)/C₆₀ (5 nm) / Pt (5 nm) and performed ISHE voltage vs. magnetic field measurements on these ssamples.

The Si/SiO₂ (300 nm) substrates were cleaned by a standard chemical cleaning procedure using soap, distilled water, acetone, and isopropanol in an ultrasonic bath. 2 nm of Cr was deposited first to enhance the adhesion between the silicon substrate and the Au/Ag layers. Both of the Cr (2nm) and Au/Ag (100nm) layers were deposited using an electron beam evaporator at a rate of 0.5 Å/s in a base pressure of $\approx 2 \times 10^{-7}$ torr. Without breaking the vacuum, a layer of 5nm C₆₀ was deposited using thermal evaporation method. The material was evaporated at a rate of 0.2 Å/s at a temperature of 520 degrees Celsius, and 2×10^{-7} torr of pressure. 5 nm of platinum was then sputtered on top as mentioned in the manuscript.

Fig. S2. V_{ISHE} vs. H data obtained from Pt layer at 300 K for Si/SiO₂/Au(100nm)/ C₆₀ (5nm)/Pt(5nm) and Si/SiO₂/Ag(100nm)/ C₆₀ (5nm)/Pt(5nm).

All measurements were performed at the same conditions as the YIG/C₆₀/Pt measurements by creating a ~ 2K temperature gradient across the samples. As can be seen in **Fig. S2**, both reference samples do not pick up any significant signal beyond the noise level. This confirms that the C₆₀/Pt interface does not contribute to the LSSE signal measured from Pt in **Figure 4**.