Supporting Information: Selective metathesis synthesis of MgCr₂S₄ by control of thermodynamic driving forces

Akira Miura,^{a*} Hiroaki Ito,^b Christopher J. Bartel,^c Wenhao Sun,^{d*} Nataly Carolina Rosero-Navarro,^a Kiyoharu Tadanaga,^a Hiroko Nakata,^e Kazuhiko Maeda,^e Gerbrand Ceder^{c,d}

^a Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

^b Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.

^c Department of Materials Science and Engineering, UC Berkeley, Berkeley, California 94720, USA

^d Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^e Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Figure S1. XRD patterns of $MgCr_2S_4$ synthesized from $NaCrS_2$ and $MgBr_2$ -KBr flux with excess Na_2S and subsequent washing with methanol.

Figure S2. XRD patterns of (black) the mixture of Cr_2S_3 and NaCl ball-milling of $CrCl_3$ and Na_2S in the molar ratio of 2:3 according to $2 CrCl_3 + 3 Na_2S \rightarrow Cr_2S_3 + 6 NaCl$, and (red) the product of the subsequent reaction between Cr_2S_3 and MgS with KCl-MgCl_2 flux at 500 °C for 30 min and wash with water. The product phase primarily shows Cr_2S_3 , and no MgCr_2S_4 is seen.

Figure S3. XRD pattern of the product of the reaction between NaCrS₂ and MgCl₂ without KCl at (black) 500 °C and (red) 800 °C for 30 min. No Na₂S excess was added. The reaction at 500 °C does not yield MgCr₂S₄ peaks. The 800 °C sample does show MgCr₂S₄ peaks, whose formation is likely facilitated by MgCl₂ melting at 714°C.

Figure S4. Tauc plot of MgCr₂S₄ powders synthesized under Na₂S excess condition.

Figure S5. Mott–Schottky plot of the MgCr₂S₄/FTO electrode measured in aqueous NaH₂PO₄–Na₂HPO₄ solution (PO₄³⁻ = 0.1 M) at pH 7.0. The electrode was prepared by electrophoretic deposition in a 50 mL acetone solution (>99.5%, Kanto Chemical) containing 0.05 g MgCr₂S₄ powder (synthesized under Na₂S excess condition) and 10 mg iodine (>99.8%, Wako Pure Chemicals). Two parallel FTO electrodes were immersed in the solution with ca. 15 mm separation, and a 20 V bias was applied between them for 30 s using a potentiostat (PSW 80-13.5, GW Instek). The MgCr₂S₄-coated area was fixed ca. 1.5 cm × 3.5 cm.

Table S1. Comparing reaction enthalpies, ΔH_r , with Gibbs energies of reaction at 1000 K, $\Delta G_r(1000 \text{ K})$, for each reaction shown in the main text.

Eq	$\Delta H_{\rm r}$	Δ <i>G</i> _r (1000 K)	Reaction
	(kJ/mol)	(kJ/mol)	
1	-2	-9	$MgS + Cr_2S_3 \rightarrow MgCr_2S_4$
2	-47	-50	$2 \operatorname{NaCrS}_2 + \operatorname{MgCl}_2 \rightarrow \operatorname{MgCr}_2 S_4 + 2 \operatorname{NaCl}$
3	-359	-326	$CrCl_3 + 2 Na_2S \rightarrow NaCrS_2 + 3 NaCl$
4	-16	-5	$NaCrS_2 + LiCl \rightarrow LiCrS_2 + NaCl$
5	33	36	$NaCrS_2 + KCl \rightarrow KCrS_2 + NaCl$