Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2019

## **Supplementary Information**

# Bismuth drugs tackle *Porphyromonas gingivalis* and attune cytokine response in human cells

Tianfan Cheng,\*\*a Yau-Tsz Lai,\* Chuan Wang,\* Yi Wang,\* Nan Jiang,\* Hongyan Li,\* Hongzhe Sun\*\* and Lijian Jin\*\*a

<sup>a</sup>Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong,

Hong Kong SAR, China

<sup>b</sup>Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.

#### **Corresponding authors:**

\*Lijian Jin, Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China.

Email: ljjin@hku.hk

\*Hongzhe Sun, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Email: hsun@hku.hk

## Supplementary materials and methods

#### **Determination of minimal inhibitory concentrations**

MIC determination was followed the broth dilution protocol described with some modification for P. gingivalis in sTSB<sup>1</sup>. Initial CFU (inocula) of P. gingivalis ATCC 33277 was  $1 \times 10^6$  CFU/ml. Drugs (RBC or CBS) and metronidazole were 2-fold diluted with sterile distill water. Optical density at 600 nm was determined on a SpectraMax M2 microplate reader (Molecular Device). Although the media in wells appeared clear and transparent when higher concentration (> 50 µM) of RBC or CBS present in P. gingivalis culture, there were a thin layer of precipitation of possible bismuth-attached bacterial debris at the bottom of wells, which slightly increased the value of OD<sub>600</sub> and decreased the calculated percentage of inhibition but did not affect the MICs. There was no black precipitation in wells for sterile control. For convenience, we used the following formula to estimate the inhibitory rate of P. gingivalis, I(%) = [1] $-(OD - OD_{SC})/(OD_{GC} - OD_{SC})] \times 100$ , where I(%) is the inhibitory percentage,  $OD_{GC}$ is the average OD<sub>600</sub> of growth controls (without drugs or antibiotics), OD<sub>SC</sub> is the average of OD<sub>600</sub> of sterility controls (without bacteria). For comparison and controlling, MIC assays were also performed using Bi3+-TRACER and its apo-counterpart, NTA-AC<sup>2-4</sup>, ranitidine (neutralized with citric acid as control of RBC) and citrate (neutralized with sodium hydroxide as control of CBS). Same procedures were performed on Actinomyces spp. and Streptococcus spp.

It is noted that the increase of inocula leads to higher MICs. We also used the inocula of  $1 \times 10^8$  and  $4 \times 10^9$  CFU/ml to define the concentration of both bismuth drugs to be used for other experiments, in which *P. gingivalis* should not be completely killed. Minimal bactericidal concentration was also determined by spotting 10  $\mu$ l aliquots of culture from each well onto blood agar plates and anaerobically incubated for 5 days.

To fully understand the viability of drug-treated *P. gingivalis*, BacTiter-Glo<sup>TM</sup> Microbial Cell Viability Assay (Promega) and LIVE/DEAD® BacLight<sup>TM</sup> Bacterial Viability Kit (Thermo Fisher) were used, and the corresponding luminescence and fluorescence were recorded on the SpectraMax M2, respectively.

#### Time course study of bismuth drugs-treated P. gingivalis

Mid-log *P. gingivalis* (OD660 = 0.6,  $4 \times 10^9$  CFU/ml) was treated with RBC and CBS, at 25, 50 and 100  $\mu$ M respectively, and anaerobically incubated at 37 °C. Untreated *P. gingivalis* served as controls. At different time points, the bacterial culture was collected, and the density by OD<sub>600</sub> and viability by BacTiter-Glo<sup>TM</sup> Microbial Cell Viability Assay were recorded using the SpectraMax M2 microplate reader with 100  $\mu$ l of culture.

#### Determination of intracellular bismuth contents of P. gingivalis

The culture of *P. gingivalis* at steady state was subcultured with 1:20 dilution and incubated for about 16 h anaerobically at 37 °C until OD<sub>600</sub> reaching 0.6, determined on a DU 730 UV/Vis Spectrophotometer (Beckman Coulter). *P. gingivalis* culture was divided into to two tubes, one for control and the other for Bi treatment by adding 25 μM RBC. Both tubes of *P. gingivalis* were further cultured for 24 h anaerobically at 37 °C. *P. gingivalis* cells were pelleted by centrifugation at 5,000 *g*, 4 °C for 10 min. The pellets were further washed with phosphate-buffered saline (PBS) twice and with water once. The pellets were lyophilized by using a FreeZone 4.5 Liter Benchtop Freeze Dry System (LABCONCO). The dry cell pellets were weighted and digested in concentrated nitric acid at 60 °C overnight and diluted in 1% nitric acid before subjected for determination of metal contents on an Agilent 7500a inductively coupled plasma mass spectrometer (ICP-MS).

#### Fluorescence confocal microscopy

At the mid-log phase, 50  $\mu$ M Bi<sup>3+</sup>-TRACER was added into PBS-washed *P. gingivalis* cell suspension (OD<sub>660</sub> = 0.3) and incubated at 37 °C anaerobically for 30 min in the dark. The cells were collected and washed with cold PBS for three times. Reagents of LIVE/DEAD *Bac*Light Bacterial Viability Kit were added into bacterial suspension before subjected to confocal imaging under a Carl Zeiss LSM710 Inverted Confocal Microscope with a Plan-Apochromat 63×/1.40 Oil Ph3 M27 oil-immersion objective, excited with a 405-nm laser (for Bi<sup>3+</sup>-TRACER), a 488-nm laser (for SYTO 9) and a 543-nm laser (for propidium iodide). All samples were observed at the same settings.

#### Gene cloning, expression and purification of recombinant proteins

Genomic DNA of *P. gingivalis* 33277 was extracted using Wizard Genomic DNA Purification Kit. Genes were amplified using Phusion High-Fidelity DNA Polymerase

with corresponding primer pairs (Table S2). Amplified gene fragments were digested by corresponding restriction enzymes (NEB) and inserted into pET-28a(+) (Novagen). The resulting plasmids were transformed into *E. coli* BL21(DE3) for over-expression.

Protein overexpression in 1 L Luria-Bertani (LB) broth medium was induced with 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG, USB) at 25 °C for 16 hr. Cell pellets were lysed in 25 mM Tris-HCl with 500 mM NaCl and 25 mM imidazole, pH7.4 supplemented with cOmplete<sup>TM</sup>, EDTA-free Protease Inhibitor Cocktail by sonication. Each recombinant protein was purified from lysate using HiTrap Chelating HP 5 mL column (GE Healthcare Life Sciences) with 25 mM Tris-HCl with 500 mM NaCl, 25 mM to 500 mM imidazole gradient, pH 7.4. His-tag was cleaved by thrombin (from bovine plasma, Sigma-Aldrich). Tag-removed proteins were finally treated with 10 mM dithiothreitol (DTT) and 10 mM ethylenediaminetetraacetic acid (EDTA) and purified using HiLoad 16/600 Superdex 200 pg (GE Life Sciences) in 20 mM Tris-HCl 150 mM NaCl, pH 7.4.

Exceptionally, the plasmid (pET28-RgpA-CD) for expressing the catalytic domain (228-720 aa, CD) of gingipain R1 was transformed into *E. coli* BL21(DE3) plysS, and RgpA-CD was overexpressed in terrific broth (TB) [24 g/L yeast extract, 20 g/L tryptone (Difco), 0.4% glycerol, 17 mM KH<sub>2</sub>PO<sub>4</sub> and 72 mM K<sub>2</sub>HPO<sub>4</sub>] rather than LB. RpgA-CD-expressed *E. coli* cell pellets were lysed in 25 mM Tris-HCl with 500 mM NaCl, pH 7.4 supplemented with 1.5 mM 4,4'-dithiopyridine disulfide (Sigma-Aldrich) and purified with 25 mM Tris-HCl with 500 mM NaCl, 25 mM to 500 mM imidazole gradient, pH 7.4, using a HiTrap Chelating HP 5 mL column (GE Healthcare Life Sciences). Next, fractions with Rgp activities were pooled together and dialyzed against 25 mM Tris-HCl, pH7.4, and then purified with 0-1M NaCl gradient using a HiTrap Q HP 5 mL column (GE Healthcare Life Sciences). Rgp-active fractions were pooled together and concentrated using Amicon Ultra-15 Centrifugal Filter Units (MWCO 10 kDa, Merck Millipore), and subsequently purified using HiLoad 16/600 Superdex 200 pg (GE Life Sciences) in 20 mM Bis-Tris-HCl 150 mM NaCl, pH 6.8. An ÄKTA FPLC system (GE Life Sciences) was used for protein purification.

#### Reconstitution of recombinant superoxide dismutase (SOD) and activity

Apo-SOD and metal-reconstituted SOD proteins were prepared from purified recombinant *P. gingivalis* SOD, following the previous protocols<sup>5</sup>. Briefly, purified

SOD was treated with 10 mM Tris-HCl, pH 3.2, containing 3 M guanidine hydrochloride (GdnHCl, Thermo Fisher) and 20 mM 8-hydroxyquinoline (Sigma Aldrich) for 30 min, followed by buffer exchange into 10 mM Tris-HCl, pH 7.8 with 3 M GdnHCl using HiTrap Desalting column (GE Healthcare Life Sciences) and then into 10 mM Tris-HCl, pH 7.8, which produced apo-SOD. Metal reconstitution was performed by incubating the apo-SOD with 5 mM (NH<sub>4</sub>)<sub>2</sub>Fe(SO<sub>4</sub>)<sub>2</sub> (for Fe-SOD), 5 mM MnSO<sub>4</sub> (for Mn-SOD) or 5 mM RBC (for Bi-SOD) in 20 mM Tris-HCl, pH 7.8 containing 7 M GdnHCl. The protein solutions were exchanged into 40 mM Tris-HCl, pH 7.8 with 2 mM corresponding metal salts or complexes using the desalting column, followed by incubation in 0.5 mM EDTA for 6 h. The final metal-reconstituted SODs were desalted into 10 mM Tris-HCl, pH7.8. SOD activity was determined using the SOD Assay Kit with either 1 μM purified metal-reconstituted recombinant SOD proteins or 1 mg/mL *P. gingivalis* lysate.

#### Thioredoxin (PGN\_0033) activity

Purified thioredoxin (PGN\_0033, 1 mg/ml) was either treated with or without 5 mM RBC at 4 °C overnight and RBC was removed by buffer exchange using Amicon Ultra-0.5 Centrifugal Filter Units (MWCO 3 kDa, Merck Millipore). Thioredoxin activity was determined using Thioredoxin Activity Fluorescent Assay Kit with either 10 μg/mL purified recombinant thioredoxin or 1 mg/mL of *P. gingivalis* lysate.

#### Gingipain activity

The catalytic domain (228-720 aa) of gingipain RgpA (20 μM RgpA-CD) and *P. gingivalis* lysates (1mg/ml, overnight culture) were used for bismuth (RBC) inhibition assay. No addition of protease inhibitors was made in *P. gingivalis* lysates. RgpA-CD was treated with either 1 or 5 mM RBC, and the lysates were treated with 5 mM RBC for 5 h at room temperature. R-gingipain activities were determined according to the established protocol<sup>6</sup>, using 20 μl of above-mentioned RgpA-CD solution or lysates with L-BAPNA as the substrate. The binding of Bi was examined by UV-vis titration using bismuth (III) nitrilotriacetate (Bi-NTA). Purified recombinant RgpA-CD was firstly treated with 10 mM DTT overnight and desalted into 10 mM HEPES buffer 100 mM NaCl, pH 7.0. Aliquots of stock solution of Bi-NTA or EDTA were then titrated into 20 μM RgpA-CD solution and UV-vis absorption spectra were recorded in the

range from 250 to 600 nm using a Varian Cary 50 spectrophotometer with a 1-cm quartz cuvette at room temperature.

#### **ATPase activity**

The ATPase activity was determined by monitoring inorganic phosphate released continuously by enzymes using EnzChek® Phosphate Assay Kit. Briefly, reaction mixture (200  $\mu$ l) containing enzymes but without the substrate ATP was prepared in each well of 96-well plates and incubated at 22 °C for 10 min. Then add final concentration of 200  $\mu$ M ATP into each well to start the reaction and immediately read absorbance at 360 nm on a SpectraMax M2 microplate reader (Molecular Device) at 37 °C. The initial velocity was calculated by fitting the initial linear data.

#### Selection of qPCR housekeeping gene for P. gingivalis

Four commonest housekeeping genes were selected for evaluating the stableness of expression as a reference, including 16S rRNA (PGN\_r0001), DNA-directed RNA polymerase beta subunit (*rpoB*, PGN\_1571), DNA gyrase B subunit (*gyrB*, PGN\_0413) and glucokinase (*glk*, PGN\_0380) using a Python package, eleven 0.1.1, which implements the GeNorm multi-gene RT-qPCR normalization algorithm<sup>7</sup>, showing that *gyrB* and *glk* were the two equally best reference. However, it was found that the *glk* gene has been disrupted by an insertion though the transcription is not affected<sup>8</sup>. Therefore, to avoid troubles, *gyrB* gene was chosen as a reference to normalize the mRNA expression levels throughout the study.

#### Hemin-agarose pull-down assay

Hemin-binding proteins in *P. gingivalis* lysates were analyzed using hemin-agarose binding pull-down assay. *P. gingivalis* were cultured in liquid media either with or without the supplement of 5.0  $\mu$ g/mL hemin and treated with or without 25  $\mu$ M RBC. The bacteria were lysed using B-PER. For each sample, 200  $\mu$ l of hemin-agarose (Sigma Aldrich) was prewashed with 1 mL of 25 mM Tris-HCl pH 7.4, 100 mM NaCl for three times (10,000 g, 5 min). Bacterial lysate (500  $\mu$ l and diluted in the above buffer to 2 mg/ml) was incubated with hemin-agarose at 37 °C for 3 h and then the supernatant was transferred to another tube. The hemin-agarose was washed with the same buffer for three times to remove non-specific binding proteins and bound proteins were eluted

with SDS-PAGE loading buffer. As suggested by Sigma Aldrich, Sepharose 4B (Sigma Aldrich) was used as the negative control for hemin-agarose.

#### P. gingivalis growth on bismuth blood agar plates

Bismuth blood agar plates were prepared by adding appropriate concentration of bismuth drugs (25 and 100  $\mu$ M) into liquified blood agar before pouring onto plates. 10  $\mu$ l of *P. gingivalis* in PBS (1 × 10<sup>8</sup> CFU/ml) were spotted onto the blood agar plates with or without bismuth drugs. The plates were further incubated anaerobically at 37 °C for four days prior to examination. The same procedures were also performed with *A. gerencseriae* and *A. israelii*.

#### Hemagglutination assay

Both *P. gingivalis* cells and cultured media were subjected to hemagglutination assay. Overnight cultured *P. gingivalis* cells and media were collected. The bacteria were washed with PBS for three times and suspended in PBS at  $OD_{600}$  of 1.3. The media were centrifuged at 13,000 g for 5 min to remove remnant bacterial cells. Fresh sheep red blood cell suspension (Cedarlane) was washed with PBS for three times by centrifugation at 1,500 rpm for 5 min. Both bacterial suspension and media were diluted in a two-fold series with PBS. For hemagglutination,  $100 \,\mu l$  of sample suspension were mixed with equal volume of 1% sheep red blood cells suspension in a V-bottom 96-well plate and incubated at room temperature for 3h.

#### **UV-vis spectroscopy**

All UV-vis spectra were collected with a Varian Cary 50 spectrophotometer using a 1-cm quartz cuvette at room temperature. Hemin stock solution was prepared by dissolving 0.1 g hemin (Sigma-Aldrich) in water by adding 2 mL of 1 M NaOH. Solution of 10 µM hemin was prepared in 10 mM HEPES buffer 100 mM NaCl, pH 7.0. Aliquots of stock solution of Bi-NTA or EDTA were then titrated into hemin solution, and UV-vis absorption spectra were recorded in the range from 250 to 700 nm. Difference spectra were obtained by subtracting hemin spectrum from titrating spectra.

The binding of bismuth was examined by UV-vis titration using bismuth (III) nitrilotriacetate (Bi-NTA). Purified recombinant RgpA-CD was firstly treated with 10 mM DTT overnight and desalted into 10 mM HEPES buffer 100 mM NaCl, pH 7.0.

Aliquots of stock solution of Bi-NTA or EDTA were then titrated into 20  $\mu$ M RgpA-CD solution and UV-vis absorption spectra were recorded in the range from 250 to 600 nm using a Varian Cary 50 spectrophotometer with a 1-cm quartz cuvette at room temperature.

#### Cell viability and cytotoxicity

Cell Counting Kit-8 (Sigma) was used to evaluate the cell viability, while Pierce LDH Cytotoxicity Assay Kit (Themo Fisher) was used to evaluate the cytotoxicity.

#### STRING analysis and enrichment for Bi<sup>3+</sup>-associated proteins

Correctly identified proteins were considered when at least both Protein Score Confidence Interval (C.I. %) and Ion Score C.I. % are larger 95 and either Protein Score or Ion Score is larger than 100. The protein-protein interaction (PPI) among identified proteins were analyzed using STRING<sup>9</sup> and GO (Gene Ontology)<sup>10</sup> and KEGG (Kyoto Encyclopedia of Genes and Genomes)<sup>11</sup> enrichment. The interaction score cutoff of 0.5 and the Markov Cluster (MCL) Inflation parameter of 3 were used for primary clustering. The PPI network was visualized using Cytoscape 3.6.1 software<sup>12</sup>.

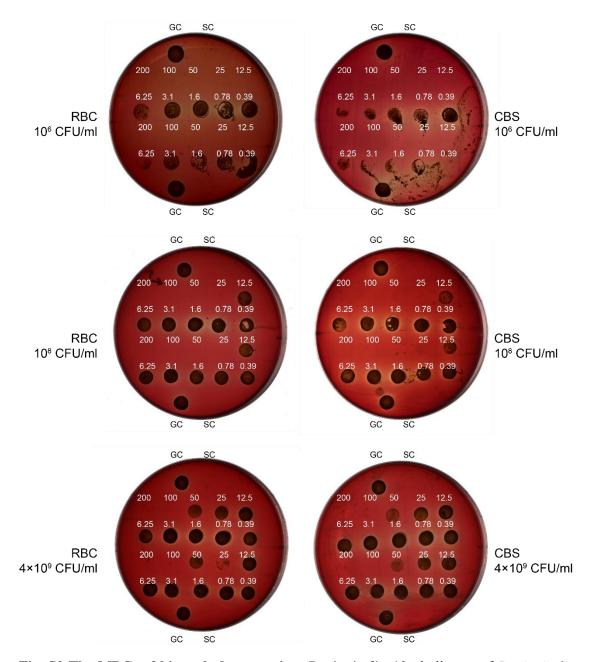
#### qPCR data analysis

For qPCR of *P. gingivalis* RNA, relative standard curve quantitation was used. For RNA of human cells, comparative  $C_T$  ( $\Delta\Delta C_T$ ) quantitation was used.

#### RNA-seq data analysis

Raw sequencing reads were filtered out low quality reads (1, reads with adaptors; 2, reads with more than 10% unknown bases; 3, reads with over 50% low quality bases whose sequencing quality < 5). Clean reads were mapped to *P. gingivalis* ATCC 33277 reference using Bowtie2 (reference genes)<sup>13</sup> and HISAT (for reference genomes)<sup>14</sup>. Genes expression levels were quantified in the units of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) by RSEM<sup>15</sup>.

Based on the algorithm following the Poisson distribution, genes in *P. gingivalis* with and without (PgRBC and Pg, or treatment and control groups) at different time points were screened to identify differentially expressed genes (DEGs) and tested with significance. The *P*-value were corrected using Bonferonni test<sup>16</sup> and a False Discovery


Rate (FDR) procedure was performed to screen off type I and II errors<sup>17</sup>. DEGs were considered as those with FDR  $\leq$  0.001 and more than 2-fold change, i.e.,  $log_2Ratio \geq 1$ .

For GO enrichment, all DEGs were firstly mapped to GO terms in the database (http://www.geneontology.org/), calculating gene numbers for every term, then uses hypergeometric test to find significantly enriched GO terms in the input list of DEGs. The calculated P-values were undertaken Bonferroni Correction<sup>16</sup>, using corrected P-value  $\leq 0.05$  as a threshold. GO terms fulfilling the criteria were defined as significantly enriched GO terms in DEGs. For KEGG enrichment, all DEGs were mapped to KEGG pathway in the database (http://www.kegg.jp/).

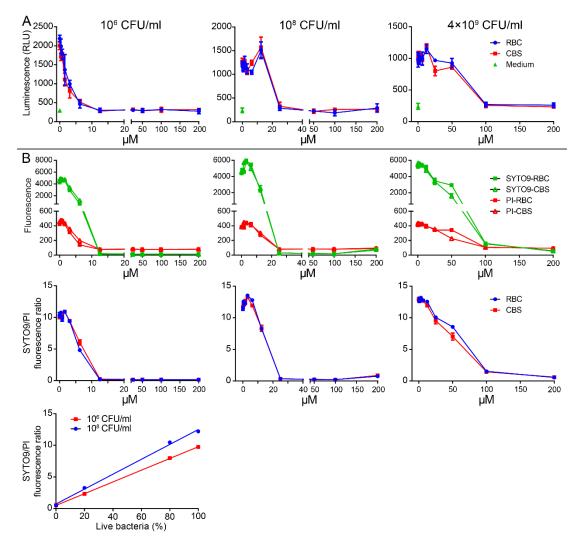

### **Supplementary figures:**



Fig. S1 Bismuth drugs inhibited growth of *P. gingivalis*. (A) A representative 96-well plate of P. gingivalis culture (initially 10<sup>6</sup> CFU/ml) after 48 h treated by ranitidine bismuth citrate (RBC) and metronidazole (MTZ) at different concentrations. At higher concentrations, dark particles of bismuth on or in P. gingivalis cells or debris could be observed leading to the increase in absorbance reading and abnormality of inhibition ratio though the culture was visually clear void of apparent bacteria. (B) One representative inhibition ratio (%) for a 96well plate of P. gingivalis culture (initially 106 bacteria/ml) after 48 h treated by RBC 4 and metronidazole (µg/ml) at series of concentrations. Blue lines indicate the borders for MIC<sub>50</sub> of either RBC or metronidazole alone. The green box indicates the MIC<sub>50</sub> when combined use of RBC and metronidazole. (C) P. gingivalis cells absorb significant amount of bismuth after treatment with 25 µM ranitidine bismuth citrate (RBC) for 24 h. Two-way ANOVA, n = 3, \*\*\*\*P < 0.0001. (**D** and **E**) A representative MICs of RBC, CBS and corresponding control compounds for inocula of 108 (upper four rows) and 106 CFU/ml (lower four rows), respectively. Ranitidine (citric acid-neutralized) is the control compound for RBC, and citrate (NaOHneutralized) is the control compound for CBS. No inhibitory effects were observed for negative control compounds. One representative plate photo and table of inhibition ratio (%) were shown. SC: sterility controls. MICs were determined by both visual and OD<sub>600</sub> reading, and the arrows indicate the MICs.



**Fig. S2 The MBCs of bismuth drugs against** *P. gingivalis*. 10 μl aliquots of *P. gingivalis* culture from each well of 48-h 96-well plates for MIC determination were spotted onto blood agar plates and incubated for 5 days. Both RBC and CBS were serially diluted in 2 folds from  $200-0.39~\mu M$  (shown on the plates). GC: growth controls; SC: sterility controls. The inocula of *P. gingivalis* are  $1\times10^6$ ,  $1\times10^8$  and  $4\times10^9$  CFU/ml, respectively. On each plate, duplicates were spotted on the upper and lower halves of the plate, respectively. For inocula of  $10^6$ , MBCs of RBC and CBS are  $12.5~\mu M$ ; for inocula of  $10^8$ , MBCs of RBC and CBS are  $25~\mu M$ ; and for the inocula of  $4\times10^9$  (OD<sub>660</sub>: 0.6), the MBCs of RBC and CBS are  $100~\mu M$ .



**Fig. S3 Effects of bismuth drugs on viability of** *P. gingivalis.* (**A**) 100 μl aliquots of *P. gingivalis* culture from each well of the same plates for MICs in Fig. S2 were assayed using BacTiter-Glo<sup>TM</sup> Microbial Cell Viability Assay, which is based on quantitation of the ATP present. For the inocula of  $1 \times 10^6$  CFU/ml, both RBC and CBS totally killed *P. gingivalis* at 12.5 μM; for inocula of  $1 \times 10^8$ , both drugs did at 25 μM; and for the inocula of  $4 \times 10^9$  (OD<sub>660</sub>: 0.6) both drugs did at 100 μM. (**B**) Aliquots of *P. gingivalis* culture from each well of the same plates were washed with 0.85% NaCl and combinedly assayed using LIVE/DEAD® BacLight<sup>TM</sup> Bacterial Viability Kit. Untreated *P. gingivalis* (GC) was considered as live bacterial sample, and 70% isopropanol-treated GC was considered as dead bacterial samples. By combining live and dead bacterial samples, the standard curve for live bacteria percentage was plot against the corresponding SYTO9/PI fluorescence ratio. For the inocula of  $1 \times 10^6$  CFU/ml, both RBC and CBS totally killed *P. gingivalis* at 12.5 μM; for inocula of  $1 \times 10^8$ , both drugs did at 25 μM; and for the inocula of  $4 \times 10^9$  (OD<sub>660</sub>: 0.6) both drugs did at 100 μM.

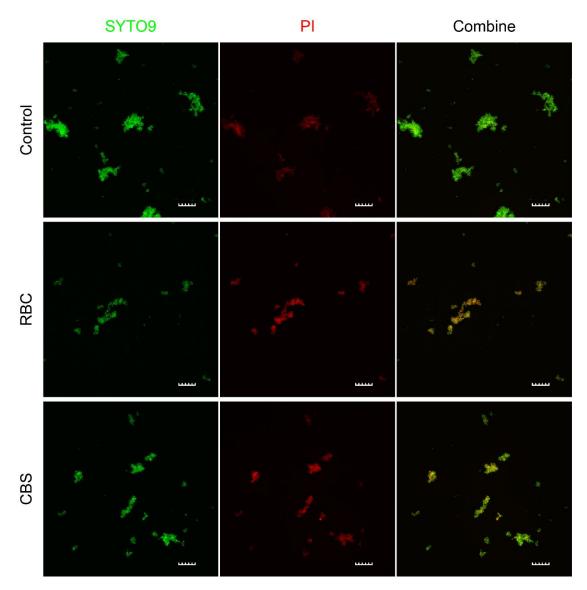



Fig. S4 Live/Dead staining of *P. gingivalis*. 10  $\mu$ l aliquots of STO9/PI-stained *P. gingivalis* (inocula  $1\times10^8$  CFU/ml) from the wells of GC and 12.5  $\mu$ M-Bi-treated were mounted onto a Confocal Laser Scanning Biological Microscope FLUOVIEW FV1000 (Olympus) for imaging. Scale bar: 20  $\mu$ m.

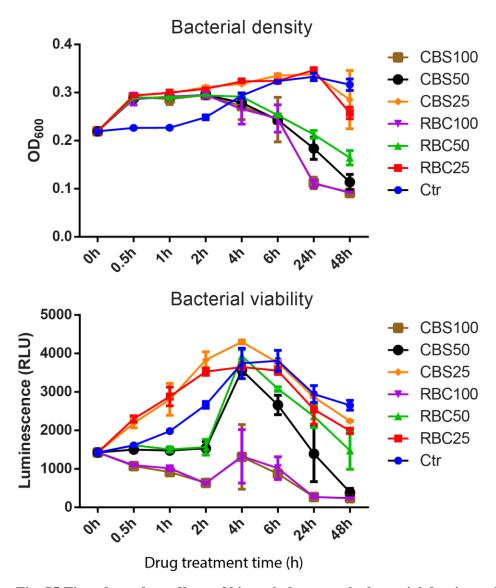



Fig. S5 Time-dependent effects of bismuth drugs on the bacterial density and viability of *P. gingivalis*. Mid-log *P. gingivalis* was treated with 25, 50 and 100  $\mu$ M of RBC or CBS and anaerobically incubated at 37 °C. At each time point, 100  $\mu$ l of *P. gingivalis* culture was collected for OD<sub>600</sub> reading (microplate) and BacTiter-Glo<sup>TM</sup> Microbial Cell Viability Assay. Two-way ANOVA, n = 3. The OD<sub>600</sub> reading (microplate) of 0.23 and 0.33 is approximately equivalent to the OD<sub>660</sub> reading (1-cm cuvette) of 0.6 and 1.0, respectively.

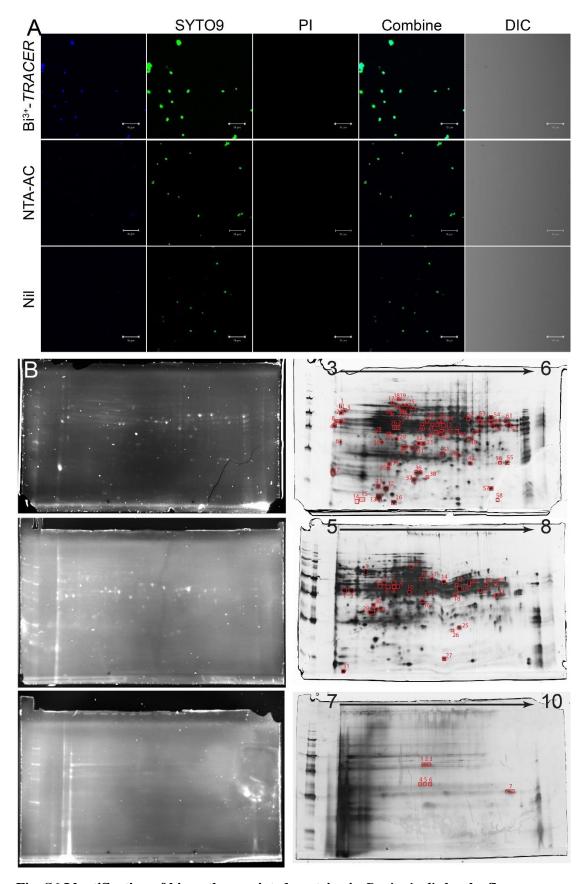
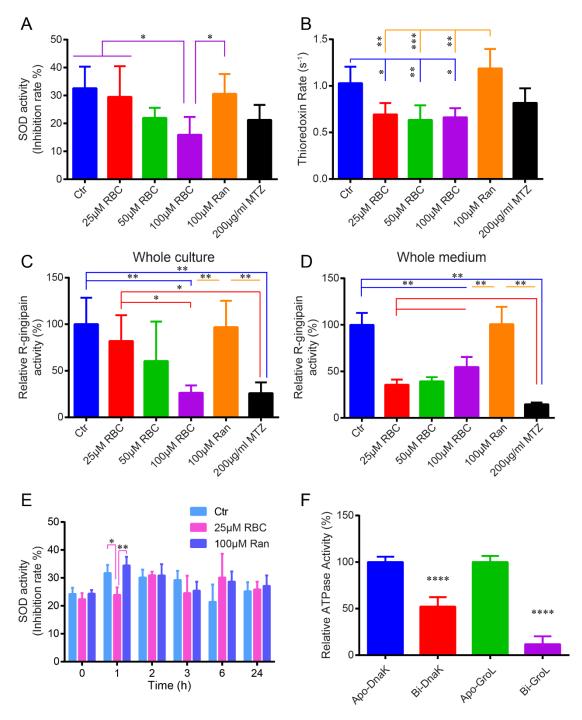




Fig. S6 Identification of bismuth-associated proteins in P. gingivalis by the fluorescence-based probe. (A)  $Bi^{3+}$ -TRACER lit up P. gingivalis cells by detecting endogenous bismuth-associated proteins. Leftist column was the blue fluorescence at 405 nm for the probe. The

viability of bacterial cells was examined by staining with Syto 9 (live) and propidium iodide (PI, dead). Scale =  $10 \mu m$ . NTA-AC is the negative control compound for the probe, and Nil represents no addition of any compound. (**B**) Bi<sup>3+</sup>-TRACER-based fluorescence 2D gels (Left) and silver-stained the same gels (Right). Three pH ranges of IEF were used, i.e. pH 3-6, pH 5-8 and pH 7-10. Lit-up spots (totally 106 spots) were excised from silver stained gels and subjected for peptide mass fingerprinting (PMF).



**Fig. S7 Bismuth perturbed activity of selective proteins depending on concentration.** (**A** and **B**) SOD and thioredoxin activities of *P. gingivalis* lysates (0.5 mg/ml) after the 24-hour treatment with 25, 50 or 100 μM RBC, 100 μM ranitidine (Ran) or 200 μg/mL metronidazole (MTZ). One-way ANOVA, n=3. (**C** and **D**) Activity of arginine-gingipains.10 μl of whole *P. gingivalis* culture (including bacteria and medium) and whole cultured medium with same treatment. One-way ANOVA, n=3. (**E**) Time-dependent SOD activity of *P. gingivalis* treated with 25 μM RBC. Two-way ANOVA, n=3, 0.5 mg/mL *P. gingivalis* lysates. (**F**) ATPase activities of 5 μM recombinant DnaK and GroL, apo and Bi-bound forms. Student's *t*-test, n=3. \*P < 0.5; \*\*P < 0.01; \*\*\*\*P < 0.001; \*\*\*\*P < 0.0001.

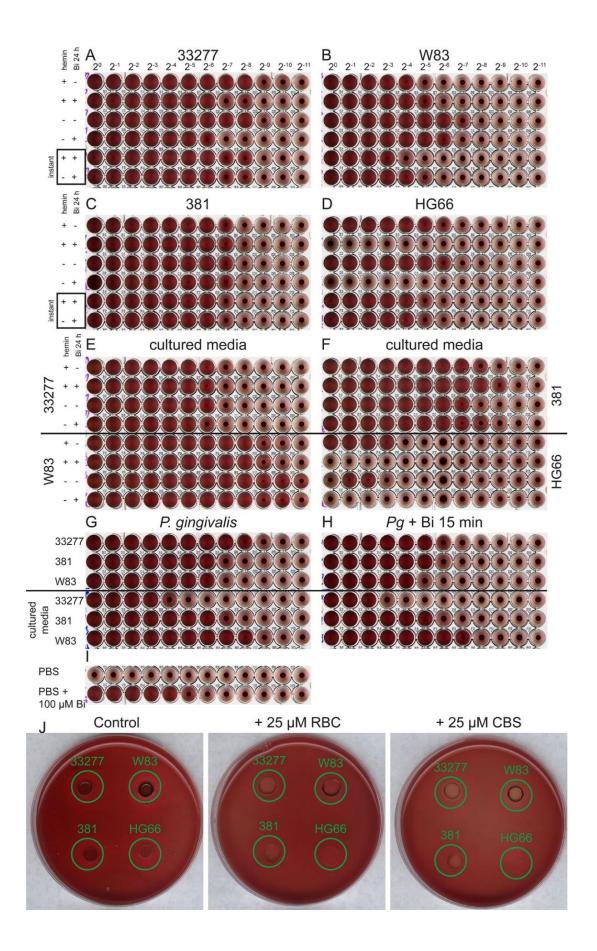
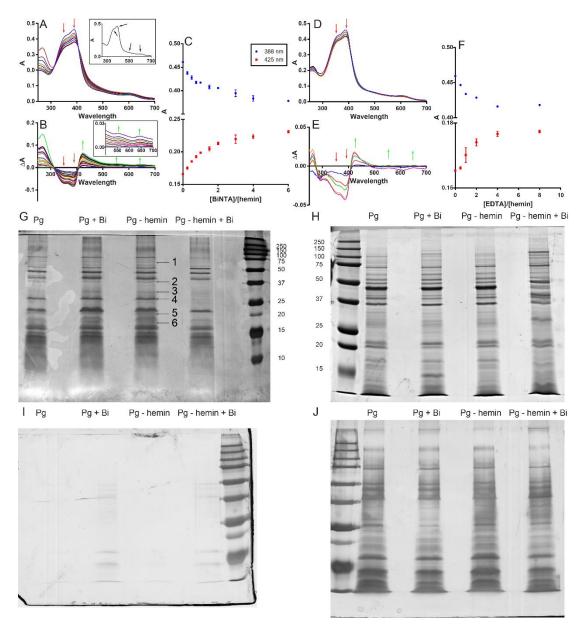
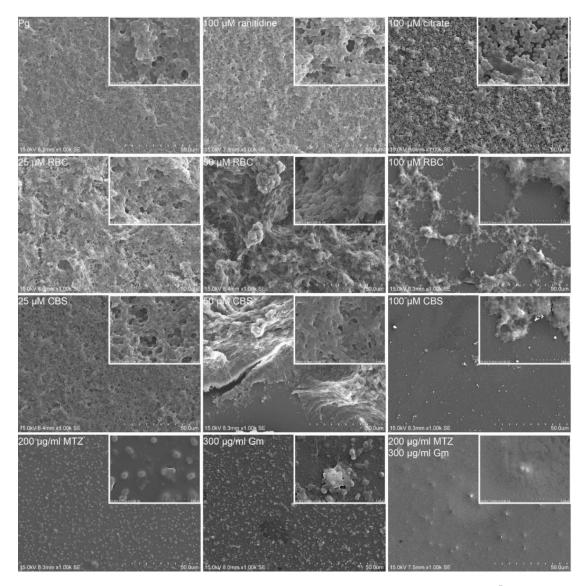
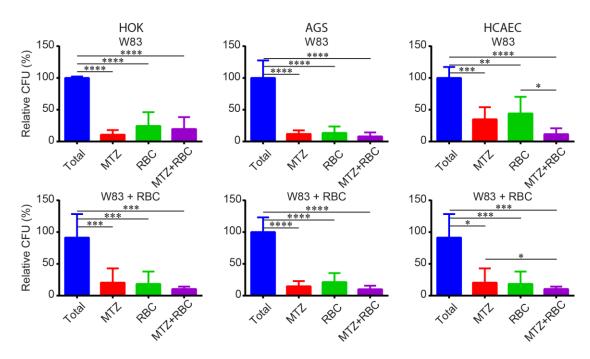
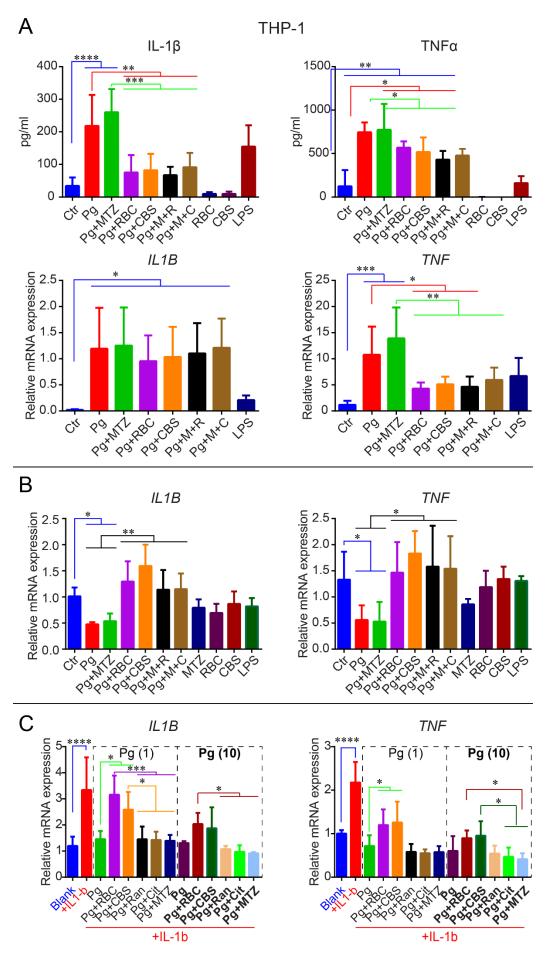



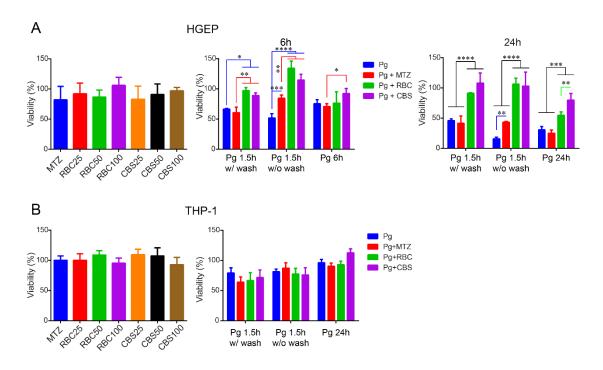

Fig. S8. Bismuth perturbed the hemagglutination activity and black pigmentation of *P. gingivalis*. Four strains of *P. gingvialis*, ATCC 33277 (**A**), W83 (**B**), 381 (**C**) and HG66 (**D**), were cultured in supplemented TSB with or without 5.0 μg/mL hemin and with or without treatment of 25 μM RBC for 24 h. Both cultured *P. gingivalis* cells and media were used in hemagglutination (HA) assay. Bismuth could inhibit the HA activity of ATCC 33277 and HG66 cells (**A** & **D** upper 4 rows), but not evidently the one of W83 and 381 cells (B & C upper 4 rows). However, both instant (**A-D** lower 2 rows) and 15-min (**G** & **H** upper 3 rows) treatment of 100 μM RBC could reduce the HA activity obviously and. 24-h Bi-treatment had complicated effects on HA activity in cultured media (**E** & **F**) while direct 15-min treatment of 100 μM Bi diminish the HA (**G** & **H** lower 3 rows). (**I**) PBS and PBS with RBC. (**J**) By spotting 10 μl of *P. gingivalis* suspension in PBS (OD<sub>660</sub> > 1) on blood agar plates without or with 25 μM RBC or CBS. The growth of all four strains was compromised and the black pigmentation was perturbed on bismuth-containing plates, appearing light brownish color rather than dark black. On plates with 100 μM RBC or CBS, no growth was observed (not shown).



**Fig. S9. Bismuth perturbed hemin and hemin-binding proteins.** (**A**) Spectra of 10 μM hemin upon titrated with Bi-NTA up to 6 molar equivalents in 10 mM HEPES buffer 100mM NaCl, pH 7.0. Red arrows showed the decrease of absorbance of peaks at 360 and 388 nm. Inset: Spectra of 10 μM hemin. Arrows indicate the characteristic peaks of hemin. (**B**) Difference spectra of 10 μM hemin upon titrated with Bi-NTA up to 6 molar equivalents in 10 mM HEPES buffer 100mM NaCl, pH 7.0. Red arrows showed the decrease of intensity of peaks at 360 and 388 nm. Green arrows showed the increase of intensity of new peaks at 425, 555 and 641 nm. Inset: Zoomed-in difference spectra from 500-700 nm. (**C**) The plot of absorbance at 388 and 425 nm vs. molar ratio of Bi-NTA to hemin, respectively. (**D**) Spectra of 10 μM hemin upon titrated with EDTA up to 10 molar equivalents in 10 mM HEPES buffer 100mM NaCl, pH 7.0. Red arrows showed the decrease of absorbance of peaks at 360 and 388 nm. (**E**) Difference spectra of 10 μM hemin upon titrated with EDTA up to 10 molar equivalents in 10 mM HEPES

buffer 100mM NaCl, pH 7.0. Red arrows showed the decrease of intensity of peaks at 360 and 388 nm. Green arrows showed the increase of intensity of new peaks at 425, 555 and 641 nm. (**F**) The plot of absorbance at 388 and 425 nm vs. molar ratio of Bi-NTA to hemin, respectively. (**G**) Hemin-binding proteins eluted from hemin-agarose. (**H**) Unbound proteins in *P. gingivalis* lysates after hemin-agarose binding. The protein profiles (both hemin-binding and hemin-unbound) for *P. gingivalis* in hemin-lacking medium with bismuth treatment was apparently different with the others. The results of identification of the marked six bands were listed in Table S7. *P. gingivalis* was cultured in supplemented TSB with or without 5.0  $\mu$ g/mL hemin and with or without treatment of 25  $\mu$ M RBC for 24 h. Using Sepharose 4B as the negative control for hemin-agarose resin, there was no apparent resin-bound protein bands visible (**I**), and the patterns of unbound proteins for the four samples were similar (**J**).



Fig. S10. Bismuth prevented the formation of *P. gingivalis* biofilms.  $1 \times 10^7$  CFU of *P. gingivalis* in sTSB were seeded into each well of 12-well plates immediate treatment with drugs, antibiotics or control compounds (RBC, CBS, ranitidine, citrate, metronidazole and gentamicin). Fixed biofilm samples were examined using SEM. Magnification:  $\times 1,000$ ; insets:  $\times 10,000$ . Scale bars: 50 µm; insets: 5 µm.



**Fig. S11. Bismuth suppressed the internalized** *P. gingivalis* **W83 in human cells.** *P. gingivalis* W83 infected HOK, AGS and HCAEC cells at multiplicity of infection (MOI) of 100 in the absence (upper) or presence (lower) of 50 μM RBC for 90 min. Infected cells were further treated with either 200 μg/mL metronidazole (as internalized *P. gingivalis*) or 50 μM RBC or both for 60 min. CFUs were normalized to the average CFU of internalized *P. gingivalis*. Three independent repeats were performed. One-way ANOVA, n = 3, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001, \*\*\*\*P < 0.0001.



**Fig. S12. Bismuth counteracted IL-1β and TNF** $\alpha$  **responses of THP-1 and HGEPs to** *P. gingivalis.* (**A**) ELISA and mRNA levels of IL-1β and TNF $\alpha$  in *P. gingivalis*-infected THP-1 macrophage cells (MOI=100) with 200 µg/ml metronidazole (Pg+MTZ), 50 µM RBC or CBS, or combined (Pg+M+R or Pg+M+C). As controls, cells were directly treated with 50 µM RBC, CBS or 5 µg/mL *P. gingivalis* LPS. (**B**) mRNA levels of *IL1B* and *TNF* genes of HGEP cells of similar experiments. (**C**) mRNA levels of *IL1B* and *TNF* of IL-1β-treated (1ng/ml) HGEPs infected with *P. gingivalis* (MOI=100) treated with 50 µM RBC, CBS, Ran or Cit or 200 µg/ml MTZ. One-way ANOVA, n > 3, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001, \*\*\*\*P < 0.0001.



**Fig. S13.** Cell viability determined by CCK-8. (A) HGEPs ( $2 \times 10^4$  cells/well) treated with different compounds or challenged with *P. gingivalis* (MOI=100). MTZ: 200 μg/ml metronidazole; RBC25, RBC50 and RBC100: 25, 50 and 100 μM RBC; CBS25, CBS50 and CBS100: 25, 50 and 100 μM CBS. Pg 1.5h w/ wash: challenge cells with *P. gingivalis* for 1.5 h, remove the bacteria and wash cells with HBSS; Pg 1.5h w/o wash: same procedure without washing cells with HBSS; Pg 6h or Pg 24h: challenge cells with *P. gingivalis* for 6 h or 24h. Drugs were added at 1.5 h. (**B**) Macrophage THP-1 cells ( $4 \times 10^4$  cells/well) treated with different compounds or challenged with *P. gingivalis* (MOI=100). Two-way ANOVA, n > 3, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001, \*\*\*\*P < 0.001.

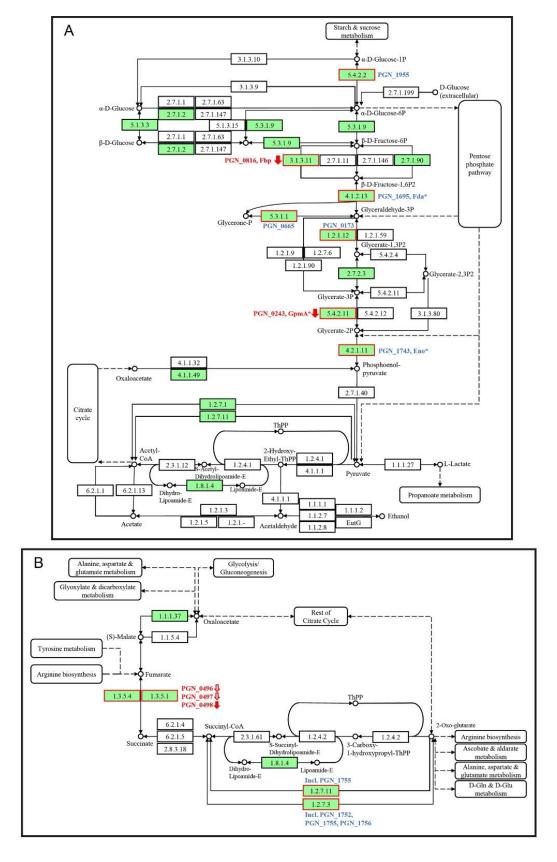



Fig. S14. The effects of bismuth on Glycolysis/Gluconeogenesis Pathway (KEGG: pgn00010) and Respiratory Chain (KEGG: pgn00020) of *P. gingivalis*. The diagrams were redrawn according to *P. gingivalis* ATCC 33277-specific pathways retrieved from KEGG

(copyrighted by Kanehisa Laboratories). P. gingivalis ATCC 33277-specific enzymes were filled with green while those from reference pathway were not filled. KEGG-enriched enzymes in this study (Bi-associated proteins, DEGs or significantly regulated proteins) from three different experiments were circled in red boxes. Asterisks indicate Bi association. Red downward arrows indicate more than 1.5-fold down-regulation in protein level. Protein names were colored in red for down-regulation and blue for non-evident regulation. Some irrelevant components in the original pathway map were omitted for clarity. Glycolysis/Gluconeogenesis pathway. (B) Respiratory chain. Since P. gingivalis is a strictly anaerobic bacterium, it does not rely on Citrate cycle, and its respiratory chain has not yet been fully characterized. It has been implicated that P. gingivalis use fumarate respiration<sup>18</sup>. Therefore, parts of original Citrate cycle pathway map were omitted. Succinate dehydrogenase/fumarate reductase (PGN\_0496-0498) is a key component in the respiratory chain.

## **Supplementary tables:**

Table S1. Primers used in this study

| For Cloning        |                                             |                                     |
|--------------------|---------------------------------------------|-------------------------------------|
| Primer Name        | Primer Sequence (5'-3')                     | Source                              |
| PgSodA-for(NdeI)   | GGAATTC <u>CATATG</u> ACTCACGAACTCATTTCC    | This study                          |
| PgSodA-rev(XhoI)   | CCGCTCGAGTTAATACCGAGATTCTACAATATC           | This study                          |
| PGN0033-for(NdeI)  | GGAATTC <u>CATATG</u> GCACTGCAAATTACAGATG   | This study                          |
| PGN0033-rev(XhoI)  | CCGCTCGAGTTAAAACAAGGCATCCAATTCTT            | This study                          |
| RgpA-CD-f(NdeI)    | GGAATTC <u>CATATG</u> TACACACCGGTAGAGGAAAAA | This study                          |
| RgpA-CD720-r(XhoI) | CCGCTCGAGTTAGCTGCGAAGAAGTTCGGGG             | This study                          |
| PgGroL-for(NdeI)   | GGAATTC <u>CATATG</u> GCAAAAGAAATCAAATTCG   | This study                          |
| PgGroL-rev(XhoI)   | CCGCTCGAGTTACATCATGCCGCCCATTC               | This study                          |
| PgDnaK-for(NdeI)   | GGAATTC <u>CATATG</u> GGAAAAATCATTGGAATTGA  | This study                          |
| PgDnaK-rev(XhoI)   | CCGCTCGAGTTATTTCACTTCCTCGAAGTCT             | This study                          |
| For qPCR           |                                             |                                     |
| 16S-F              | TGTTACAATGGGAGGACAAAGGG                     | Ref. 19                             |
| 16S-R              | TTACTAGCGAATCCAGCTTCACGG                    | Ref. 19                             |
| glk-F              | TCGGTGTAGGTGCTCCCAAT                        | This study                          |
| glk-R              | AGCATTTGGGCGAAGGGTAT                        | This study                          |
| gyrB-F             | AGTGGGCGTTTCTTGTGTGAA                       | This study                          |
| gyrB-R             | CAGCTGAACTCCTGCATATGGA                      | This study                          |
| rpoB-F             | GCGTTATTGTTTCCCAATTGC                       | This study                          |
| rpoB-R             | AATGGTATGATTCGCGCTGAA                       | This study                          |
| SodA-F             | TGGCTCCTGTTATCAGCAAAGA                      | This study                          |
| SodA-R             | AATTCCGTGCCGATGATGAG                        | This study                          |
| PGN0033-F          | CTGAAGGCAAGCCGATGGTA                        | This study                          |
| PGN0033-R          | GATAGCGCGTCCTTCATATTCC                      | This study                          |
| rgpA-F             | TCTTTGGCGGTTTCAGACACT                       | This study                          |
| rgpA-R             | GGAGGGTGCAATCAGGACAT                        | This study                          |
| kgp-F              | ACACCTGTTGTTCGCGTGAA                        | This study                          |
| kgp-R              | AGAGGGTTGATGTGGCATGAG                       | This study                          |
| rgpB-F             | TCCCCTACGTGTACGGACAGA                       | This study                          |
| rgpB-R             | CATCACGCAGGATGAAAGGA                        | This study                          |
| IL6-F              | GGAGACTTGCCTGGTGAAAATC                      | Ref. 20                             |
| IL6-R              | GGGTCAGGGGTGGTTATTGC                        | Ref. 20                             |
| IL8-F              | GACATACTCCAAACCTTTCCACC                     | Ref. 20                             |
| IL8-R              | AACTTCTCCACAACCCTCTGC                       | Ref. 20                             |
| IL1B-F             |                                             | Ref. 21                             |
| IL1B-R             |                                             | Ref. 21                             |
| TNF-F              | GAGGCCAAGCCCTGGTATG                         | PrimerBank<br>(#25952110c2) Ref. 22 |
| TNF-R              | CGGGCCGATTGATCTCAGC                         | PrimerBank<br>(#25952110c2) Ref. 22 |
| ACTB-F             | CATGTACGTTGCTATCCAGGC                       | PrimerBank<br>(#4501885a1) Ref. 22  |

| ACTB-R | CTCCTTAATGTCACGCACGAT | PrimerBank           |
|--------|-----------------------|----------------------|
|        |                       | (#4501885a1) Ref. 22 |

## Table S2. Antibodies used in this study

| Antibody Name                                       | Antibody Source |
|-----------------------------------------------------|-----------------|
| Rabbit polyclonal anti-PgSOD                        | This paper      |
| Rabbit polyclonal anti-PGN0033                      | This paper      |
| Rabbit anti-Porphyromonas gingivalis Gingipain R1   | MyBioSource     |
| Mouse monoclonal anti-GAPDH (clone GA1R)            | Thermo Fisher   |
| Goat polyclonal Anti-Rabbit IgG H&L, HRP-Conjugated | Abcam           |
| Horse anti-mouse IgG, HRP-linked                    | Cell Signaling  |

#### Table S3. Peptide mass fingerprinting identification results of bismuth-associated proteins in P. gingivalis and GO and KEGG enrichment

The names of corresponding spots on Bi-TRACER fluorescence 2D gels (Fig. S2B) are listed in Sample Name. The full list of identification is in (**A**). Correctly identified proteins were considered when at least both Protein Score Confidence Interval (C.I. %) and Ion Score C.I. % are larger 95 and either Protein Score or Ion Score is larger than 100. Details for gingipains and hemagglutinins are in (**B**). GO and KEGG enrichment were performed using STRING and listed in (**C**). FDR cutoff is less than 0.05.

#### (A) Full list of identification

| Plate    | Sample          |                                                                                      | Pg 33277        |          |          |
|----------|-----------------|--------------------------------------------------------------------------------------|-----------------|----------|----------|
| Position | Name            | Protein Name                                                                         | Accession No.   | Gene ID  | MW       |
| H14      | Pg5/8-1         | tetratricopeptide repeat protein, TPR-1                                              | WP_012457845.1  | PGN_0876 | 45886    |
| H15      | Pg5/8-2         | tetratricopeptide repeat protein, TPR-1                                              | WP_012457845.1  | PGN_0876 | 45886    |
| H16      | Pg5/8-3         | chaperonin, GroL                                                                     | WP_012458280.1  | PGN_1452 | 58210.3  |
| H17      | Pg5/8-4         | translation elongation factor Tu, Tuf #                                              |                 |          | 43575.1  |
| H18      | Pg5/8-5         | tetratricopeptide repeat protein, TPR-2                                              | WP_012458333.1  | PGN_1513 | 51301.2  |
| H19      | Pg5/8-6         | phosphopyruvate hydratase/Enolase, Eno                                               | WP_012458500.1  | PGN_1743 | 46049.4  |
| H20      | Pg5/8-7         | tetratricopeptide repeat protein, TPR-2                                              | WP_012458333.1  | PGN_1513 | 51301.2  |
| H21      | Pg5/8-8         | phosphopyruvate hydratase/Enolase, Eno                                               | WP_012458500.1  | PGN_1743 | 46049.4  |
| I14      | Pg5/8-9         | translation elongation factor Tu, Tuf                                                | WP_012458382.1  | PGN_1578 | 43744.2  |
| I15      | Pg5/8-10        | Major fimbrium subunit, FimA                                                         | WP_012457306.1  | PGN_0180 | 41568.9  |
| I16      | Pg5/8-11        | Minor fimbrium subunit, Mfa1                                                         | WP_012457396.1  | PGN_0287 | 60862.5  |
| I17      | Pg5/8-12        | 50S ribosomal protein L14 #                                                          |                 |          | 13203.3  |
| C9       | Pg 5/8-13       | lysine-specific cysteine proteinase; Kgp                                             | WP_012458488.1  | PGN_1728 | 188228.1 |
| C10      | Pg 5/8-14       | lysine-specific cysteine proteinase; Kgp                                             | WP_012458488.1  | PGN_1728 | 188228.1 |
| C1.1     | Pg 5/8-<br>15-1 | aminomathyltmanafamasa alvaina alaayaga ayatam matain T. CayT.                       | W/D 005074565 1 | DCN 0550 | 40420    |
| C11      | Pg 5/8-         | aminomethyltransferase; glycine cleavage system protein T, GcvT ^                    | WP_005874565.1  | PGN_0550 | 40438    |
| C12      | 15-2            | aminomethyltransferase; glycine cleavage system protein T, GcvT                      | WP_005874565.1  | PGN_0550 | 40438    |
| C13      | Pg 5/8-16       | class I fructose-bisphosphate aldolase, Fda                                          | WP_012458465.1  | PGN_1695 | 33051.9  |
| C14      | Pg 5/8-17       | glutamate dehydrogenase, Gdh                                                         | WP_010956255.1  | PGN_1367 | 49623.4  |
| C15      | Pg 5/8-18       | phosphoserine transaminase #                                                         |                 |          | 40331.7  |
| C16      | Pg 5/8-19       | NADP oxidoreductase; NAD(P)(+) transhydrogenase (Re/Si-specific) subunit alpha, PntA | WP_004585530.1  | PGN_1120 | 41517.4  |
| D9       | Pg 5/8-20       | glutamate dehydrogenase, Gdh                                                         | WP_010956255.1  | PGN_1367 | 49623.4  |

|     |           | ·                                                                                         | •              |               |          |
|-----|-----------|-------------------------------------------------------------------------------------------|----------------|---------------|----------|
| D10 | Pg 5/8-21 | phosphoserine aminotransferase, SerC                                                      | WP_005874020.1 | PGN_0612      | 40319.6  |
| D11 | Pg 5/8-22 | OmpA family protein; outer membrane protein 40, OmpA-like                                 | WP_012457732.1 | PGN_0728      | 42578.2  |
| D12 | Pg 5/8-23 | serine hydroxymethyltransferase, GlyA                                                     | WP_004583439.1 | PGN_0038      | 46814.8  |
| D13 | Pg 5/8-24 | malate dehydrogenase, Mdh                                                                 | WP_004583610.1 | PGN_1880      | 36422.6  |
| D14 | Pg 5/8-25 | superoxide dismutase, SodA                                                                | WP_004585361.1 | PGN_0564      | 21487.9  |
| D15 | Pg 5/8-26 | peptidoglycan domain protein                                                              | WP_005874170.1 | PGN_1670      | 21914.6  |
| D16 | Pg 5/8-27 |                                                                                           |                |               |          |
| E9  | Pg 7/10-1 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E10 | Pg 7/10-2 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E11 | Pg 7/10-3 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E12 | Pg 7/10-4 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E13 | Pg 7/10-5 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E14 | Pg 7/10-6 | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like  | WP_012457733.1 | PGN_0729      | 43477.2  |
| E15 | Pg 7/10-7 | glutamate dehydrogenase, Gdh                                                              | WP_010956255.1 | PGN_1367      | 49623.4  |
|     |           | 1 4 4 1 4 1 HMDDEF1000 02050 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |                | PGN_1728      |          |
| E16 | Pg 3/6-1  | hypothetical protein HMPREF1988_02050, partial; Kgp; RgpA; cleaved adhesin domain protein |                | ;<br>PGN_1970 |          |
| F9  | Pg 3/6-2  | arginine-specific thiol protease, RgpA                                                    | WP_043876339.1 | PGN_1970      | 186817.8 |
| F10 | Pg 3/6-3  | peptidase C25, partial ^                                                                  | WP_043876339.1 | PGN_1970      | 186817.8 |
| F11 | Pg 3/6-4  | arginine-specific thiol protease, RgpA                                                    | WP_043876339.1 | PGN_1970      | 186817.8 |
| F12 | Pg 3/6-5  | arginine-specific thiol protease, RgpA                                                    | WP_043876339.1 | PGN_1970      | 186817.8 |
| F13 | Pg 3/6-6  | Hemagglutinin A (HagA)                                                                    | WP_012458492.1 | PGN_1733      | 186817.8 |
| F14 | Pg 3/6-7  | arginine-specific thiol protease, RgpA ^                                                  | WP_043876339.1 | PGN_1970      | 186817.8 |
| F15 | Pg 3/6-8  | hemagglutinin/protease #                                                                  |                |               |          |
| F16 | Pg 3/6-9  | hypothetical protein, PorV                                                                | WP_004583425.1 | PGN_0023      | 43239.6  |
| G9  | Pg 3/6-10 | electron transport complex, RnfABCDGE type, G subunit; RnfG ^                             | WP_004584790.1 | PGN_1656      |          |
| G10 | Pg 3/6-11 | arginine-specific thiol protease, RgpA                                                    | WP_043876339.1 | PGN_1970      | 186817.8 |
| G11 | Pg 3/6-13 | 50S ribosomal protein L7/L12, RplL                                                        | WP_010956001.1 | PGN_1572      | 12735.8  |
| G12 | Pg 3/6-14 | hemagglutinin; peptidase C25, partial #                                                   |                |               |          |
| G13 | Pg 3/6-15 | 30S ribosomal protein S19; RpsS <sup>^</sup>                                              | WP_010956447.1 | PGN_1864      | 9902.3   |
| G14 | Pg 3/6-16 | thiol reductase thioredoxin                                                               | WP_004583434.1 | PGN_0033      | 11539    |
| G15 | Pg 3/6-17 | molecular chaperone, DnaK                                                                 | WP_012457876.1 | PGN_0916      | 69172.5  |
|     |           |                                                                                           |                |               |          |

| G16 | Pg 3/6-18 | peptidase M13; Endopeptidase, PepO ^                                                    | WP_012457383.1  | PGN_0271  | 79063.9  |
|-----|-----------|-----------------------------------------------------------------------------------------|-----------------|-----------|----------|
| H9  | Pg 3/6-19 | peptidase M13; Endopeptidase, PepO ^                                                    | WP_012457383.1  | PGN_0271  | 79063.9  |
| H10 | Pg 3/6-20 | chaperonin, GroL                                                                        | WP_012458280.1  | PGN_1452  | 58214.2  |
| H11 | Pg 3/6-21 | chaperonin, GroL                                                                        | WP_012458280.1  | PGN_1452  | 58214.2  |
| H12 | Pg 3/6-22 | peptidase family C25, ig-like domain protein, partial #                                 | (/1_012130200.1 | 101(_1102 | 30211.2  |
| H13 | Pg 3/6-23 | chaperonin, GroL                                                                        | WP_012458280.1  | PGN_1452  | 58214.2  |
| H14 | Pg 3/6-24 | arginine-specific cysteine proteinase, RgpB <sup>^</sup>                                | WP_012458292.1  | PGN_1466  | 81278.2  |
| Ј3  | Pg3/6-25  | arginine-specific cysteine proteinase, RgpB <sup>^</sup>                                | WP 012458292.1  | PGN 1466  | 81278.2  |
| J4  | Pg3/6-26  | tetratricopeptide repeat protein, TPR-1                                                 | WP_012457845.1  | PGN_0876  | 45886    |
| J5  | Pg3/6-27  | tetratricopeptide repeat protein, TPR-1                                                 | WP_012457845.1  | PGN_0876  | 45886    |
| J6  | Pg3/6-28  | T9SS C-terminal target domain-containing protein ^                                      | WP_012457704.1  | PGN_0693  | 45011.8  |
| J7  | Pg3/6-29  | GumN protein #                                                                          | WP_012457322.1  | PGN_0200  | 33587.3  |
| J8  | Pg3/6-30  | electron transfer flavoprotein subunit beta, FixA                                       | WP_005873659.1  | PGN_1173  | 28703.8  |
| J9  | Pg3/6-31  | electron transfer flavoprotein subunit beta, FixA                                       | WP_005873659.1  | PGN_1173  | 28703.8  |
| J10 | Pg3/6-32  | hypothetical protein; fimbrial assembly protein; Mfa4                                   | WP_012457398.1  | PGN_0290  | 37144.1  |
| K3  | Pg3/6-34  | indolepyruvate oxidoreductase subunit beta, IorB                                        | WP_004585221.1  | PGN_0709  | 21067    |
|     |           | NAD dependent epimerase/dehydratase; UDP-glucose 4-epimerase; NAD-dependent nucleotide- |                 |           |          |
| K4  | Pg3/6-35  | diphosphate-sugar epimerase; WcaG                                                       | WP_004584504.1  | PGN_1370  | 35306.7  |
| K5  | Pg3/6-36  | 2-Cys peroxiredoxin; lipid hydroperoxide peroxidase, Tpx                                | WP_018964814.1  | PGN_0388  | 18129.4  |
| K6  | Pg3/6-37  | NA starvation/stationary phase protection protein #                                     | WP_012458706.1  | PGN_2037  | 17908.3  |
| K7  | Pg3/6-38  | outer membrane protein, OmpH <sup>^</sup>                                               | WP_012457407.1  | PGN_0300  |          |
| K8  | Pg3/6-39  | tetratricopeptide repeat protein, TPR-2                                                 | WP_012458333.1  | PGN_1513  | 51301.2  |
| K9  | Pg5/8-28  | electron transfer flavoprotein subunit, FixA                                            | WP_005873659.1  | PGN_1173  | 28703.8  |
| K10 | Pg5/8-29  | fimbrial assembly protein, Mfa4                                                         | WP_012457398.1  | PGN_0290  | 37144.1  |
| L3  | Pg5/8-30  | peptidylprolyl isomerase; peptidyl-prolyl cis-trans isomerase, FKBP-type, FkpA          | WP_004585257.1  | PGN_0743  | 27971.6  |
| L4  | Pg5/8-31  | thiol reductase thioredoxin                                                             | WP_004583434.1  | PGN_0033  | 11539    |
| J12 | Pg3/6-40  | translation elongation factor Tu, Tuf                                                   | WP_012458382.1  | PGN_1578  | 43744.2  |
| J13 | Pg3/6-41  | translation elongation factor Tu, Tuf ^                                                 | WP_012458382.1  | PGN_1578  | 43744.2  |
| J14 | Pg3/6-42  | arginine-specific thiol protease, RgpA                                                  | WP_043876339.1  | PGN_1970  | 186817.8 |
| J15 | Pg3/6-43  | tetratricopeptide repeat protein, TPR-2                                                 | WP_012458333.1  | PGN_1513  | 51301.2  |
| J16 | Pg3/6-44  | phosphopyruvate hydratase/Enolase, Eno                                                  | WP_012458500.1  | PGN_1743  | 46049.4  |
| J17 | Pg3/6-45  | phosphate acetyltransferase, EutD                                                       | WP_004584444.1  | PGN_1179  | 35976.1  |

| J18 | Pg3/6-46 | fimbrilin; FimA type I fimbrilin, FimA                                                                                   | WP_012457306.1 | PGN_0180 | 41568.9  |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|
| J19 | Pg3/6-47 | glycine cleavage system protein T, GcvT                                                                                  | WP_005874565.1 | PGN_0550 | 40438    |
| K12 | Pg3/6-48 | class I fructose-bisphosphate aldolase, Fda                                                                              | WP_012458465.1 | PGN_1695 | 33080    |
| K13 | Pg3/6-49 | ribosome-recycling factor, Frr                                                                                           | WP_012458570.1 | PGN_1832 | 20785    |
| K14 | Pg3/6-50 | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase, GpmA                                                          | WP_005875265.1 | PGN_0243 | 28832.9  |
| K15 | Pg3/6-52 | lysine-specific cysteine proteinase, partial; Kgp                                                                        | WP_012458488.1 | PGN_1728 | 188228.1 |
| K16 | Pg3/6-53 | lysine-specific cysteine proteinase, partial; Kgp                                                                        | WP_012458488.1 | PGN_1728 | 188228.1 |
| K17 | Pg3/6-54 | lysine-specific cysteine proteinase, partial; Kgp                                                                        | WP_012458488.1 | PGN_1728 | 188228.1 |
| K18 | Pg3/6-55 | superoxide dismutase; SodA                                                                                               | WP_004585361.1 | PGN_0564 | 21487.9  |
| K19 | Pg3/6-56 | peptidoglycan domain protein                                                                                             | WP_005874170.1 | PGN_1670 | 21914.6  |
| L12 | Pg3/6-57 | NAD dependent epimerase/dehydratase; UDP-glucose 4-epimerase; NAD-dependent nucleotide-diphosphate-sugar epimerase; WcaG | WP_004584504.1 | PGN_1370 | 35306.7  |
| L13 | Pg3/6-58 | SusC/RagA family TonB-linked outer membrane protein; receptor antigen A, RagA ^                                          | WP_080504438.1 | PGN_0293 | 112329   |
| L14 | Pg3/6-59 | glutamate dehydrogenase, Gdh                                                                                             | WP_010956255.1 | PGN_1367 | 49623.4  |
| L15 | Pg3/6-60 | glutamate dehydrogenase, Gdh                                                                                             | WP_010956255.1 | PGN_1367 | 49623.4  |
| L16 | Pg3/6-61 | glutamate dehydrogenase, Gdh                                                                                             | WP_010956255.1 | PGN_1367 | 49623.4  |
| L17 | Pg3/6-62 | NAD(P) transhydrogenase subunit alpha, PntA                                                                              | WP_043890130.1 | PGN_1120 | 41482.4  |
| L18 | Pg3/6-63 | NAD(P) transhydrogenase subunit alpha, PntA                                                                              | WP_043890130.1 | PGN_1120 | 41482.4  |
| L19 | Pg3/6-64 | DNA recombination protein RmuC #                                                                                         |                |          |          |
| M12 | Pg3/6-65 | Fimbrillin #                                                                                                             |                |          |          |
| M13 | Pg3/6-66 | aspartate-semialdehyde dehydrogenase, Asd ^                                                                              | WP_012457650.1 | PGN_0618 | 37480.9  |
| M14 | Pg3/6-69 | hypothetical protein #                                                                                                   |                |          |          |
| M15 | Pg3/6-70 | outer membrane protein 40 #                                                                                              |                |          |          |
| M16 | Pg3/6-71 | glutamate dehydrogenase, partial #                                                                                       |                |          |          |
| M17 | Pg3/6-72 | hypothetical protein #                                                                                                   |                |          |          |

Note: #: Not correctly identified, ^: Identified, either Protein Score or Ion Score is larger than 100.

## (B) Details for gingipains and hemagglutinins

| Plate    | Sample |              | Pg 33277      |         |    |        |        |           |
|----------|--------|--------------|---------------|---------|----|--------|--------|-----------|
| Position | Name   | Protein Name | Accession No. | Gene ID | MW | Region | Domain | Region MW |

| C9   | Pg 5/8-13  | lysine-specific cysteine proteinase; Kgp                | WP_012458488.1 | PGN_1728  | 188228.1 | 229-700   | catalytic             | 51825.97 |
|------|------------|---------------------------------------------------------|----------------|-----------|----------|-----------|-----------------------|----------|
| C10  | Pg 5/8-14  | lysine-specific cysteine proteinase; Kgp                | WP_012458488.1 | PGN_1728  | 188228.1 | 229-700   | catalytic             | 51825.97 |
|      |            |                                                         |                | PGN_1728; |          | 978-1145; | RgpA HA1 adhesin;     |          |
| E16  | Pg 3/6-1   | Kgp, RgpA <sup>^</sup>                                  |                | PGN_1970  |          | 996-1162  | Kgp39 adhesin         |          |
|      |            | · · ^                                                   |                | PGN_1728; |          |           |                       |          |
| F9   | Pg 3/6-2   | Kgp, RgpA <sup>^</sup>                                  |                | PGN_1970  |          |           | HA1-3; Kgp39-HA2      |          |
| F10  | Pg 3/6-3   | arginine-specific thiol protease; RgpA <sup>^</sup>     | WP_043876339.1 | PGN_1970  |          | 550-1386  |                       |          |
| F11  | Pg 3/6-4   | arginine-specific thiol protease; RgpA                  | WP_043876339.1 | PGN_1970  | 186817.8 |           |                       |          |
| F12  | Pg 3/6-5   | arginine-specific thiol protease; RgpA                  | WP_043876339.1 | PGN_1970  |          |           | CD,HA1-4              |          |
| F13  | Pg 3/6-6   | Hemagglutinin A (HagA)                                  | WP_012458492.1 | PGN_1733  | 285018.1 |           |                       |          |
| F14  | Pg 3/6-7   | RgpA; Kgp; hemagglutinin ^                              |                |           |          |           |                       |          |
| F15  | Pg 3/6-8   | hemagglutinin/protease #                                |                |           |          |           |                       |          |
| G10  | Pg 3/6-11  | arginine-specific thiol protease; RgpA                  | WP_043876339.1 | PGN_1970  | 188228.1 | 819-1414  | HA1-3                 | 64313.02 |
| G12  | Pg 3/6-14  | hemagglutinin; peptidase C25, partial #                 |                |           |          |           |                       |          |
| H12  | Pg 3/6-22  | peptidase family C25, ig-like domain protein, partial # |                |           |          |           |                       |          |
| H14  | Pg 3/6-24  | arginine-specific cysteine proteinase,<br>RgpB          | WP_012458292.1 | PGN_1466  | 81278.2  |           |                       |          |
| 1117 | 1 g 3/0-24 | arginine-specific cysteine proteinase,                  | W1_012430272.1 | 1011_1400 | 01270.2  |           |                       |          |
| J3   | Pg3/6-25   | RgpB                                                    | WP_012458292.1 | PGN_1466  | 81278.2  |           |                       |          |
| J14  | Pg3/6-42   | arginine-specific thiol protease; RgpA                  | WP_043876339.1 | PGN_1970  | 186817.8 | 36-678    | Propeptide, catalytic | 71241.92 |
| K15  | Pg3/6-52   | lysine-specific cysteine proteinase; Kgp                | WP_012458488.1 | PGN_1728  | 188228.1 | 229-700   | catalytic             | 51825.97 |
| K16  | Pg3/6-53   | lysine-specific cysteine proteinase; Kgp                | WP_012458488.1 | PGN_1728  | 188228.1 | 120-700   | Propeptide, catalytic | 64129.95 |
| K17  | Pg3/6-54   | lysine-specific cysteine proteinase; Kgp                | WP_012458488.1 | PGN_1728  | 188228.1 | 120-700   | Propeptide, catalytic | 64129.95 |

## (C) GO and KEGG enrichment of identified bismuth-associating proteins in *P. gingivalis*

| #Pathway ID | Pathway description | Observed gene count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                                                                                                                                               |
|-------------|---------------------|---------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0008150  | biological process  | 17                  | 3.69E-05 | PGN_0038 (glyA), PGN_0180 (fimA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_0916 (dnaK), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS), PGN_1970 (rgpA) |

| GO.0044238 | primary metabolic process                            | 16 | 3.69E-05 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 ( serC), PGN_0916 (dnaK), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS), PGN_1970 (rgpA) |
|------------|------------------------------------------------------|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0071704 | organic substance<br>metabolic process               | 16 | 5.94E-05 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_0916 (dnaK), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS), PGN_1970 (rgpA)  |
| GO.0009405 | pathogenesis &                                       | 4  | 0.000289 | PGN_0180 (fimA), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1970 (rgpA)                                                                                                                                                                                                         |
| GO.0019752 | carboxylic acid<br>metabolic process                 | 7  | 0.00111  | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1367 (gdh), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                        |
| GO.1901564 | organonitrogen<br>compound metabolic<br>process      | 11 | 0.00119  | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1367 (gdh), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                                                      |
| GO.0006096 | glycolytic process                                   | 3  | 0.00172  | PGN_0243 (gpmA), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                                                                                           |
| GO.0009069 | serine family amino acid metabolic process           | 3  | 0.00172  | PGN_0038 (glyA), PGN_0550 (gcvT), PGN_0612 (serC)                                                                                                                                                                                                                         |
| GO.0019538 | protein metabolic process                            | 9  | 0.00172  | PGN_0916 (dnaK), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1832 (frr), PGN_1864 (rpsS), PGN_1970 (rgpA)                                                                                                                      |
| GO.0044237 | cellular metabolic process                           | 13 | 0.00172  | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (SerC), PGN_0916 (dnaK), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                    |
| GO.0044712 | single-organism<br>catabolic process                 | 4  | 0.00172  | PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                                                                          |
| GO.0072524 | pyridine-containing<br>compound metabolic<br>process | 4  | 0.00172  | PGN_0243 (gpmA), PGN_0612 (serC), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                                                                          |
| GO.1901575 | organic substance catabolic process                  | 4  | 0.00268  | PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                                                                          |
| GO.0006508 | proteolysis &                                        | 3  | 0.00645  | PGN_1728 (kgp), PGN_1733 (hagA), PGN_1970 (rgpA)                                                                                                                                                                                                                          |
| GO.0006563 | L-serine metabolic process                           | 2  | 0.00645  | PGN_0038 (glyA), PGN_0612 (serC)                                                                                                                                                                                                                                          |
| GO.0044763 | single-organism cellular process                     | 8  | 0.0104   | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1367 (gdh), PGN_1695 (fda), PGN_1743 (eno), PGN_1832 (frr)                                                                                                                                        |
| GO.0006732 | coenzyme metabolic process                           | 4  | 0.0128   | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_1695 (fda), PGN_1743 (eno)                                                                                                                                                                                                          |

| GO.0006544 | glycine metabolic process                          | 2  | 0.0144   | PGN_0038 (glyA), PGN_0550 (gcvT)                                                                                                                                                                                                                                          |
|------------|----------------------------------------------------|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0009070 | serine family amino acid biosynthetic process      | 2  | 0.0144   | PGN_0038 (glyA), PGN_0612 (serC)                                                                                                                                                                                                                                          |
| GO.0006520 | cellular amino acid<br>metabolic process           | 4  | 0.0179   | PGN_0038 (glyA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1367 (gdh)                                                                                                                                                                                                         |
| GO.0034641 | cellular nitrogen<br>compound metabolic<br>process | 9  | 0.0217   | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0612 (serC), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                                                                                       |
| GO.0044267 | cellular protein<br>metabolic process              | 6  | 0.0465   | PGN_0916 (dnaK), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1832 (frr), PGN_1864 (rpsS)                                                                                                                                                                        |
|            |                                                    |    |          |                                                                                                                                                                                                                                                                           |
| GO.0003674 | molecular function                                 | 16 | 0.000179 | PGN_0038 (glyA), PGN_0180 (fimA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_0916 (dnaK), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1695 (fda), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1864 (rpsS), PGN_1970 (rgpA) |
| GO.0004197 | cysteine-type<br>endopeptidase activity &          | 3  | 0.00139  | PGN_1728 (kgp), PGN_1733 (hagA), PGN_1970 (rgpA)                                                                                                                                                                                                                          |
| GO.0003824 | catalytic activity                                 | 11 | 0.00307  | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1367 (gdh), PGN_1578 (tuf), PGN_1695 (fda), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1970 (rgpA)                                                                                      |
| GO.0008483 | transaminase activity                              | 2  | 0.0161   | PGN_0550 (gcvT), PGN_0612 (serC)                                                                                                                                                                                                                                          |
| GO.0030170 | pyridoxal phosphate<br>binding                     | 2  | 0.0161   | PGN_0038 (glyA), PGN_0612 (serC)                                                                                                                                                                                                                                          |
|            |                                                    |    |          |                                                                                                                                                                                                                                                                           |
| GO.0005575 | cellular component                                 | 12 | 0.00078  | PGN_0038 (glyA), PGN_0180 (fimA), PGN_0612 (serC), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                                     |
| GO.0005576 | extracellular region                               | 3  | 0.000363 | PGN_1728 (kgp), PGN_1733 (hagA), PGN_1743 (eno)                                                                                                                                                                                                                           |
| GO.0005615 | extracellular space                                | 2  | 0.00379  | PGN_1728 (kgp), PGN_1733 (hagA)                                                                                                                                                                                                                                           |
| GO.0009986 | cell surface                                       | 2  | 0.00379  | PGN_1367 (gdh), PGN_1743 (eno)                                                                                                                                                                                                                                            |
| GO.0005623 | cell                                               | 10 | 0.00454  | PGN_0038 (glyA), PGN_0180 (fimA), PGN_0612 (serC), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                                                                      |
| GO.0044464 | cell part                                          | 10 | 0.00454  | PGN_0038 (glyA), PGN_0180 (fimA), PGN_0612 (serC), PGN_1367 (gdh), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS)                                                                                                      |

| GO.0005622 | intracellular                                | 8 | 0.0245   | PGN_0038 (glyA), PGN_0612 (serC), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS) |
|------------|----------------------------------------------|---|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| GO.0005737 | cytoplasm                                    | 8 | 0.0245   | PGN_0038 (glyA), PGN_0612 (serC), PGN_1452 (groL), PGN_1572 (rplL), PGN_1578 (tuf), PGN_1743 (eno), PGN_1832 (frr), PGN_1864 (rpsS) |
| KEGG       |                                              |   |          |                                                                                                                                     |
| 00680      | Methane metabolism                           | 7 | 1.00E-07 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0612 (serC), PGN_1179 (eutD), PGN_1695 (fda), PGN_1743 (eno), PGN_1880 (mdh)                  |
| 01200      | Carbon metabolism                            | 8 | 0.000245 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_1179 (eutD), PGN_1695 (fda), PGN_1743 (eno), PGN_1880 (mdh) |
| 00260      | Glycine, serine and threonine metabolism     | 5 | 0.000359 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0550 (gcvT), PGN_0612 (serC), PGN_0618 (asd)                                                  |
| 01120      | Microbial metabolism in diverse environments | 8 | 0.000585 | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0612 (serC), PGN_0618 (asd), PGN_1179 (eutD), PGN_1695 (fda), PGN_1743 (eno), PGN_1880 (mdh)  |
| 01230      | Biosynthesis of amino acids                  | 6 | 0.00171  | PGN_0038 (glyA), PGN_0243 (gpmA), PGN_0612 (serC), PGN_0618 (asd), PGN_1695 (fda), PGN_1743 (eno)                                   |
| 03018      | RNA degradation                              | 3 | 0.0111   | PGN_0916 (dnaK), PGN_1452 (groL), PGN_1743 (eno)                                                                                    |
| 00010      | Glycolysis /<br>Gluconeogenesis              | 3 | 0.0217   | PGN_0243 (gpmA), PGN_1695 (fda), PGN_1743 (eno)                                                                                     |

Significant enrichment result (FDR < 0.05)

Gene names were obtained from NCBI. Old locus tags were used, as "PGN\_xxxx".

<sup>&</sup>amp;: Interestingly enriched categories are in orange

# Table S4. Summary of DEGs of short- and long-term, up- and down-regulation in *P. gingivalis* at each timepoint after RBC treatment and their GO and KEGG enrichments

Definition: The DEGs found at 6h were considered long-term regulated, otherwise, short-term if present at two timepoints, and they were listed in the ( $\mathbf{A}$ ) and ( $\mathbf{B}$ ), respectively, and both new and old NCBI locus tags were shown. ( $\mathbf{C}$  and  $\mathbf{D}$ ) The enrichment of DEGs at each timepoint. Threshold of significance for both GO and KEGG enrichment is P-value  $\leq 0.05$ , but we also included those with P-value less than 0.06. It should be noticed that due to the GO database, two categories were incorrectly annotated, i.e., proteolysis and peptidase activity, both of which only contained six transposase genes and should be excluded. The values of  $\log 2(Y/X)$  were shown within parentheses.

#### (A) Short-termly regulated DEGs

| <b>Up-regulated genes</b> |            |                                                                      |  |
|---------------------------|------------|----------------------------------------------------------------------|--|
| Gene symbol               | Old symbol | Description                                                          |  |
| PGN_RS00045               | PGN_0008   | ATP-dependent Clp protease ClpC                                      |  |
| PGN_RS00160               | PGN_0033   | thiol reductase thioredoxin                                          |  |
| PGN_RS00190               | PGN_0041   | molecular chaperone HtpG                                             |  |
| PGN_RS00195               | PGN_0042   | phosphatidate cytidylyltransferase                                   |  |
| PGN_RS00200               | PGN_0043   | cell division protein FtsH; ATP-dependent zinc metalloprotease FtsH  |  |
| PGN_RS00245               | PGN_0053   | hypothetical protein                                                 |  |
| PGN_RS00250               | PGN_0054   | hypothetical protein                                                 |  |
| PGN_RS00255               | PGN_0055   | lysozyme                                                             |  |
| PGN_RS00260               | PGN_0056   | conjugal transfer protein                                            |  |
| PGN_RS00505 #             | PGN_0108   | <u>pseudo</u>                                                        |  |
| PGN_RS01370               | PGN_0285   | FAD-dependent pyridine nucleotide-disulfide oxidoreductase           |  |
| PGN_RS01505               | PGN_0314   | formate transporter                                                  |  |
| PGN_RS01715               | PGN_0359   | Fe-S cluster assembly protein SufD; ABC transporter permease protein |  |
| PGN_RS01765               | PGN_0371   | 4'-phosphopantetheinyl transferase                                   |  |
| PGN_RS01770               | PGN_0373   | thiol reductase thioredoxin                                          |  |
| PGN_RS01845               | PGN_0388   | 2-Cys peroxiredoxin                                                  |  |
| PGN_RS02340               | PGN_0490   | MATE family efflux transporter; DNA-damage-inducible protein F       |  |
| PGN_RS02350               | PGN_0492   | copper-translocating P-type ATPase                                   |  |

| PGN_RS02355   |          | hypothetical protein                                                                         |
|---------------|----------|----------------------------------------------------------------------------------------------|
| PGN_RS02670   | PGN_0564 | superoxide dismutase [Mn/Fe]                                                                 |
| PGN_RS02880   | PGN_0604 | ferritin                                                                                     |
| PGN_RS03140   | PGN_0660 | peroxiredoxin; alkyl hydroperoxide reductase C subunit                                       |
| PGN_RS03145   | PGN_0661 | alkyl hydroperoxide reductase subunit F                                                      |
| PGN_RS03435   | PGN_0720 | ABC transporter permease                                                                     |
| PGN_RS03440   | PGN_0721 | phosphonate ABC transporter ATP-binding protein                                              |
| PGN_RS03445   | PGN_0722 | hypothetical protein                                                                         |
| PGN_RS03530   | PGN_0741 | TonB-dependent receptor                                                                      |
| PGN_RS04020   | PGN_0842 | IS5/IS1182 family transposase                                                                |
| PGN_RS04365   | PGN_0916 | molecular chaperone DnaK                                                                     |
| PGN_RS04370   |          | mobilization protein                                                                         |
| PGN_RS04375   | PGN_0917 | tyrosine recombinase                                                                         |
| PGN_RS04380   |          | hypothetical protein, discontinued                                                           |
| PGN_RS04475   | PGN_0936 | glycerate dehydrogenase                                                                      |
| PGN_RS04650 # | PGN_0971 | IS5/IS1182 family transposase                                                                |
| PGN_RS05030   | PGN_1049 | alkaline phosphatase                                                                         |
| PGN_RS05040   |          | hypothetical protein, discontinued                                                           |
| PGN_RS05320   | PGN_1111 | formatetetrahydrofolate ligase                                                               |
| PGN_RS05355   | PGN_1118 | IS5/IS1182 family transposase                                                                |
| PGN_RS05570 # | PGN_1161 | IS5/IS1182 family transposase                                                                |
| PGN_RS05800   | PGN_1206 | bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase |
| PGN_RS05810   | PGN_1208 | ATP-dependent chaperone ClpB                                                                 |
| PGN_RS05870   | PGN_1221 | cobalamin adenosyltransferase                                                                |
| PGN_RS05920   | PGN_1232 | thioredoxin-disulfide reductase                                                              |
| PGN_RS06005   | PGN_1253 | hypothetical protein                                                                         |
| PGN_RS06120 # | PGN_1280 | <u>pseudo</u>                                                                                |
| PGN_RS06125 # | PGN_1281 | <u>pseudo</u>                                                                                |
| PGN_RS06145   | PGN_1285 | conjugal transfer protein                                                                    |
| PGN_RS06150   | PGN_1286 | lysozyme                                                                                     |
| PGN_RS06155   | PGN_1287 | hypothetical protein                                                                         |
| PGN_RS06160   | PGN_1288 | hypothetical protein                                                                         |

| PGN_RS06250          | PGN_1308     | DNA-binding protein; iron dependent repressor; FeoA                |
|----------------------|--------------|--------------------------------------------------------------------|
| PGN_RS06255          | PGN_1309     | ferrous iron transporter B; FeoB                                   |
| PGN_RS06930          | PGN_1451     | molecular chaperone GroES                                          |
| PGN_RS06935          | PGN_1452     | molecular chaperone GroEL                                          |
| PGN_RS07285          | PGN_1526     | hypothetical protein                                               |
| PGN_RS07290          | PGN_1527     | SAM-dependent methyltransferase                                    |
| PGN_RS07295          | PGN_1528     | SAM-dependent methyltransferase                                    |
| PGN_RS07375          | PGN_1547     | DUF2807 domain-containing protein                                  |
| PGN_RS08155          | PGN_1715     | nucleotide exchange factor GrpE                                    |
| PGN_RS08160          | PGN_1716     | molecular chaperone DnaJ                                           |
| PGN_RS08165          | PGN_1717     | hypothetical protein                                               |
| PGN_RS08170          | PGN_1718     | UDP-2,3-diacylglucosamine hydrolase                                |
| PGN_RS08175          | PGN_1719     | RNase III inhibitor                                                |
| PGN_RS08220          | PGN_1729     | acetyltransferase                                                  |
| PGN_RS08225          | PGN_1730     | hypothetical protein                                               |
| PGN_RS08525          | PGN_1797     | membrane protein                                                   |
| PGN_RS08530          | PGN_1798     | methyltransferase UbiE                                             |
| PGN_RS09040 ^        | PGN_1906     | hypothetical protein; Hemagglutinin protein HagC                   |
| PGN_RS09240          | PGN_1951     | hypothetical protein                                               |
| PGN_RS09245          | PGN_1953     | TonB-dependent receptor                                            |
| PGN_RS09640          | PGN_2037     | DNA starvation/stationary phase protection protein                 |
| PGN_RS09825          | PGN_2071     | 2-dehydropantoate 2-reductase                                      |
| Down-regulated genes |              |                                                                    |
| Gene symbol          | Old symbol   | Description                                                        |
| PGN_RS00840          | Old Syllisol | pseudo                                                             |
| PGN_RS00845          | PGN_0183     | major fimbrial subunit protein (FimA); Major fimbrium subunit FimC |
| PGN_RS00850          | PGN_0184     | hypothetical protein; Major fimbrium tip subunit FimD              |
| PGN_RS00855          | PGN_0185     | hypothetical protein; Major fimbrium tip subunit FimE              |
| PGN RS00860 #        | PGN 0186     | hypothetical protein                                               |
| PGN_RS01450          | PGN_0302     | rubrerythrin                                                       |
| PGN RS01455 #        | <u> </u>     | hypothetical protein                                               |

| PGN_RS01890   | PGN_0395 | hypothetical protein                                            |  |  |  |
|---------------|----------|-----------------------------------------------------------------|--|--|--|
| PGN_RS02365   | PGN_0496 | succinate dehydrogenase/fumarate reductase cytochrome b subunit |  |  |  |
| PGN_RS02370   | PGN_0497 | succinate dehydrogenase/Fumarate reductase flavoprotein subunit |  |  |  |
| PGN_RS02740   | PGN_0577 | IS5/IS1182 family transposase                                   |  |  |  |
| PGN_RS02930   | PGN_0614 | histidinol-phosphate aminotransferase                           |  |  |  |
| PGN_RS03705   | PGN_0777 | glycosyl transferase                                            |  |  |  |
| PGN_RS04045 ^ | PGN_0846 | hypothetical protein                                            |  |  |  |
| PGN_RS04275   | PGN_0895 | 4Fe-4S ferredoxin                                               |  |  |  |
| PGN_RS05095   | PGN_1063 | transposase                                                     |  |  |  |
| PGN_RS05715   | PGN_1191 | IS5/IS1182 family transposase, discontinued                     |  |  |  |
| PGN_RS06495   |          | hypothetical protein                                            |  |  |  |
| PGN_RS06725   | PGN_1407 | histidinol-phosphate aminotransferase                           |  |  |  |
| PGN_RS07125   | PGN_1494 | coproporphyrinogen III oxidase                                  |  |  |  |
| PGN_RS07225   | PGN_1515 | type III pantothenate kinase                                    |  |  |  |
| PGN_RS08715   |          | pseudo, discontinued                                            |  |  |  |
| PGN_RS09535   | PGN_2014 | RND transporter MFP subunit                                     |  |  |  |

<sup>^:</sup> FPKMs for both treated and untreated samples were less than 10. #: FPKMs either both treated or untreated samples were less than 50, the gene were colored in orange. Both were underlined and not considered for final interpretation.

#### (B) Long-termly regulated DEGs

| <b>Up-regulated genes</b> |                 |                                                            |
|---------------------------|-----------------|------------------------------------------------------------|
| Gene symbol               | Old symbol      | Description                                                |
| PGN RS01045 #             | <u>PGN 0218</u> | IS5/IS1182 family transposase                              |
| PGN_RS02170 #             | PGN_0454        | IS982 family transposase                                   |
| PGN_RS02300               | PGN_0481        | hypothetical protein                                       |
| PGN_RS02645               | PGN_0557        | TonB-dependent receptor (hemin utilization receptor, HmuR) |
| PGN_RS02650               | PGN_0558        | hypothetical protein (HmuY)                                |
| PGN_RS04510               | PGN_0945        | TetR family transcriptional regulator                      |
| PGN_RS04515               | PGN_0946        | membrane protein                                           |

| PGN_RS04520                 | PGN_0947        | hypothetical protein                                       |
|-----------------------------|-----------------|------------------------------------------------------------|
| PGN_RS04525                 | PGN_0948        | hypothetical protein                                       |
| PGN_RS04530                 | PGN_0949        | ABC transporter ATP-binding protein                        |
| PGN_RS04535                 | PGN_0950        | ABC transporter ATP-binding protein                        |
| PGN_RS04540                 |                 | hypothetical protein                                       |
| PGN_RS05165 #               | <u>PGN_1077</u> | IS5/IS1182 family transposase                              |
| PGN_RS06370                 | PGN_1334        | hypothetical protein                                       |
| PGN_RS06375                 | PGN_1335        | TonB-dependent receptor                                    |
| PGN_RS06380                 | PGN_1336        | DUF4876 domain-containing protein                          |
| PGN_RS07040                 | PGN_1476        | T9SS C-terminal target domain-containing protein           |
| PGN_RS08495                 | PGN_1790        | hypothetical protein                                       |
| PGN_RS08500                 | PGN_1791        | flavodoxin                                                 |
| PGN_RS09080                 |                 | hypothetical protein                                       |
| PGN_RS09085                 | PGN_1916        | ABC transporter ATP-binding protein                        |
| PGN_RS09090                 | PGN_1917        | ABC transporter ATP-binding protein                        |
| PGN_RS09095                 | PGN_1918        | hypothetical protein                                       |
| PGN_RS09100                 | PGN_1919        | hypothetical protein                                       |
| PGN_RS09105                 | PGN_1920        | membrane protein                                           |
| PGN_RS09110                 | PGN_1921        | TetR family transcriptional regulator                      |
|                             |                 |                                                            |
| <b>Down-regulated genes</b> |                 |                                                            |
| Gene symbol                 | Old symbol      | Description                                                |
| PGN_RS01370                 | PGN_0285        | FAD-dependent pyridine nucleotide-disulfide oxidoreductase |
| PGN RS02125 #               | PGN 0442        | IS982 family transposase                                   |
| PGN_RS02195 ^               | PGN_0459        | IS982 family transposase                                   |
| PGN_RS04945                 | PGN_1032        | hypothetical protein                                       |
| PGN_RS02785 #               | PGN_0585        | IS982 family transposase                                   |
| PGN_RS03075                 | PGN_0644        | IS5/IS1182 family transposase                              |
| PGN_RS03770 ^               | PGN_0790        | IS982 family transposase                                   |
| PGN RS04120 #               | <u>PGN 0864</u> | IS982 family transposase                                   |
| PGN_RS05110 #               | PGN_1066        | IS982 family transposase                                   |

# (C) GO Enrichment

| 30 min                    |               |               |           |                                                                           |
|---------------------------|---------------|---------------|-----------|---------------------------------------------------------------------------|
|                           | Cluster       |               | Corrected |                                                                           |
| GO Term                   | Freq.         | Genome Freq.  | P-value   | DEGs List                                                                 |
| <b>Biological Process</b> |               |               |           |                                                                           |
|                           |               |               |           | PGN_RS00160 (2.4), PGN_RS01845 (2.8), PGN_RS02880 (2.2), PGN_RS03145      |
|                           | 9 out of 139  | 14 out of 980 |           | (1.8), PGN_RS03580 (-1.1), PGN_RS06255 (2.8), PGN_RS07030 (-1.1),         |
| homeostatic process       | genes, 6.5%   | genes, 1.4%   | 0.00569   | PGN_RS09520 (-1.0), PGN_RS09640 (2.2)                                     |
|                           |               |               |           | PGN_RS01705 (2.5), PGN_RS01715 (2.4), PGN_RS02545 (-1.1), PGN_RS02550 (-  |
|                           |               |               |           | 1.0), PGN_RS02690 (2.0), PGN_RS03025 (-1.1), PGN_RS03190 (-1.0),          |
|                           |               |               |           | PGN_RS03230 (-1.1), PGN_RS05045 (2.2), PGN_RS05320 (3.1), PGN_RS05425 (-  |
| cofactor biosynthetic     | 17 out of 139 | 46 out of 980 |           | 1.1), PGN_RS05800 (2.5), PGN_RS07225 (-1.2), PGN_RS08655 (-1.2),          |
| process                   | genes, 12.2%  | genes, 4.7%   | 0.01948   | PGN_RS08660 (-1.2), PGN_RS09780 (-1.0), PGN_RS09825 (2.8)                 |
|                           |               |               |           | PGN_RS02545 (-1.1), PGN_RS02550 (-1.0), PGN_RS02690 (2.0), PGN_RS03025 (- |
|                           |               |               |           | 1.1), PGN_RS03190 (-1.0), PGN_RS03230 (-1.1), PGN_RS05045 (2.2),          |
|                           |               |               |           | PGN_RS05320 (3.1), PGN_RS05425 (1.1), PGN_RS05800 (2.5), PGN_RS07225 (-   |
| coenzyme biosynthetic     | 15 out of 139 | 39 out of 980 |           | 1.2), PGN_RS08655 (-1.2), PGN_RS08660 (-1.2), PGN_RS09780 (-1.0),         |
| process                   | genes, 10.8%  | genes, 4.0%   | 0.03202   | PGN_RS09825 (2.8)                                                         |
|                           | 6 out of 139  | 8 out of 980  |           | PGN_RS00160 (2.4), PGN_RS01845 (2.8), PGN_RS02880 (2.2), PGN_RS03145      |
| cellular homeostasis      | genes, 4.3%   | genes, 0.8%   | 0.04725   | (1.8), PGN_RS03580 (-1.1), PGN_RS09640 (2.2)                              |
| 1h                        |               |               |           |                                                                           |
| <b>Biological Process</b> |               |               |           |                                                                           |
|                           |               |               |           | PGN_RS00490 (1.5), PGN_RS00505 (3.3), PGN_RS00985 (-2.1), PGN_RS02740 (-  |
|                           |               |               |           | 1.3), PGN_RS02795 (-1.4), PGN_RS03075 (-9.1), PGN_RS03570 (-1.1),         |
|                           |               |               |           | PGN_RS03980 (6.6), PGN_RS04020 (8.3), PGN_RS04650 (7.4), PGN_RS04825 (-   |
|                           |               |               |           | 2.4), PGN_RS05165 (2.1), PGN_RS05355 (3.8), PGN_RS05570 (1.1),            |
| transposition, DNA-       | 21 out of 92  | 57 out of 980 |           | PGN_RS05650 (-1.2), PGN_RS05715 (-1.3), PGN_RS05850 (-1.1), PGN_RS06105   |
| mediated                  | genes, 22.8%  | genes, 5.8%   | 6.49E-07  | (1.5), PGN_RS06120 (3.3), PGN_RS08715 (-1.4), PGN_RS09010 (6.5)           |
|                           |               |               |           | PGN_RS00490 (1.5), PGN_RS00505 (3.3), PGN_RS00985 (-2.1), PGN_RS02740 (-  |
|                           |               |               |           | 1.3), PGN_RS02795 (-1.4), PGN_RS03075 (-9.1), PGN_RS03570 (-1.1),         |
|                           |               |               |           | PGN_RS03980 (6.6), PGN_RS04020 (8.3), PGN_RS04650 (7.4), PGN_RS04825 (-   |
|                           |               |               |           | 2.4), PGN_RS05165 (2.1), PGN_RS05355 (3.8), PGN_RS05570 (1.1),            |
|                           | 21 out of 92  | 57 out of 980 |           | PGN_RS05650 (-1.2), PGN_RS05715 (-1.3), PGN_RS05850 (-1.1), PGN_RS06105   |
| transposition             | genes, 22.8%  | genes, 5.8%   | 6.49E-07  | (1.5), PGN_RS06120 (3.3), PGN_RS08715 (-1.4), PGN_RS09010 (6.5)           |
|                           | 22 out of 92  | 73 out of 980 |           | PGN_RS00490 (1.5), PGN_RS00505 (3.3), PGN_RS00985 (-2.1), PGN_RS02740 (-  |
| DNA recombination         | genes, 23.9%  | genes, 7.4%   | 1.92E-05  | 1.3), PGN_RS02795 (-1.4), PGN_RS03075 (-9.1), PGN_RS03570 (-1.1),         |

|                            |               |                |          | PGN_RS03980 (6.6), PGN_RS04020 (8.3), PGN_RS04375(1.5), PGN_RS04650       |
|----------------------------|---------------|----------------|----------|---------------------------------------------------------------------------|
|                            |               |                |          | (7.4), PGN_RS04825 (-2.4), PGN_RS05165 (2.1), PGN_RS05355 (3.8),          |
|                            |               |                |          | PGN_RS05570 (1.1), PGN_RS05650 (-1.2), PGN_RS05715 (-1.3), PGN_RS05850 (- |
|                            |               |                |          | 1.1), PGN_RS06105 (1.5), PGN_RS06120 (3.3), PGN_RS08715 (-1.4),           |
|                            |               |                |          | PGN_RS09010 (6.5)                                                         |
| response to oxidative      | 5 out of 92   | 6 out of 980   |          | PGN_RS01450 (-2.1), PGN_RS02670 (1.5), PGN_RS03140 (1.2), PGN_RS03145     |
| stress                     | genes, 5.4%   | genes, 0.6%    | 0.00586  | (1.4), PGN_RS05920 (1.1)                                                  |
|                            |               |                |          | PGN_RS00490 (1.5), PGN_RS00505 (3.3), PGN_RS00985 (-2.1), PGN_RS02740 (-  |
|                            |               |                |          | 1.3), PGN_RS02795 (-1.4), PGN_RS03075 (-9.1), PGN_RS03570 (-1.1),         |
|                            |               |                |          | PGN_RS03980 (6.6), PGN_RS04020 (8.3), PGN_RS04375 (1.5), PGN_RS04650      |
|                            |               |                |          | (7.4), PGN_RS04705 (-1.1), PGN_RS04825 (-2.4), PGN_RS05095 (-1.0),        |
|                            |               |                |          | PGN_RS05165 (2.1), PGN_RS05355 (3.8), PGN_RS05570 (1.1), PGN_RS05650 (-   |
|                            |               |                |          | 1.2), PGN_RS05715 (-1.3), PGN_RS05850 (-1.1), PGN_RS05895 (1.6),          |
|                            | 26 out of 92  | 130 out of 980 |          | PGN_RS06105 (1.5), PGN_RS06120 (3.3), PGN_RS08160 (2.4), PGN_RS08715 (-   |
| DNA metabolic process      | genes, 28.3%  | genes, 13.3%   | 0.00722  | 1.4), PGN_RS09010 (6.5)                                                   |
|                            |               |                |          | PGN_RS00160 (1.4), PGN_RS01450 (-2.1), PGN_RS01845 (2.4), PGN_RS02370 (-  |
|                            |               |                |          | 1.1), PGN_RS02375 (-1.1), PGN_RS02670 (1.5), PGN_RS02880 (2.5),           |
|                            |               |                |          | PGN_RS03140 (1.2), PGN_RS03145 (1.4), PGN_RS04475 (1.6), PGN_RS04995      |
|                            |               |                |          | (1.8), PGN_RS05125 (-1.1), PGN_RS05800 (1.4), PGN_RS05895 (1.6),          |
|                            |               |                |          | PGN_RS05920 (1.1), PGN_RS07875 (-1.6), PGN_RS07880 (-1.3), PGN_RS07885 (- |
|                            |               |                |          | 1.2), PGN_RS07890 (-1.5), PGN_RS07895 (-1.4), PGN_RS08325 (-1.5),         |
| oxidation-reduction        | 26 out of 92  | 130 out of 980 |          | PGN_RS08340 (-1.3), PGN_RS08345 (-1.4), PGN_RS08500 (2.2), PGN_RS09640    |
| process                    | genes, 28.3%  | genes, 13.3%   | 0.00722  | (1.3), PGN_RS09825 (1.7)                                                  |
|                            | 5 out of 92   | 8 out of 980   |          | PGN_RS00160 (1.4), PGN_RS01845 (2.4), PGN_RS02880 (2.5), PGN_RS03145      |
| cellular homeostasis       | genes, 5.4%   | genes, 0.8%    | 0.04688  | (1.4), PGN_RS09640 (1.3)                                                  |
| <b>Molecular Function</b>  |               |                |          |                                                                           |
|                            |               |                |          | PGN_RS00490 (1.5), PGN_RS00505 (3.3), PGN_RS00985 (-2.1), PGN_RS02740 (-  |
|                            |               |                |          | 1.3), PGN_RS02795 (-1.4), PGN_RS03075 (-9.1), PGN_RS03570 (-1.1),         |
|                            |               |                |          | PGN_RS03980 (6.6), PGN_RS04020 (8.3), PGN_RS04650 (7.4), PGN_RS04825 (-   |
|                            |               |                |          | 2.4), PGN_RS05165 (2.1), PGN_RS05355 (3.8), PGN_RS05570 (1.1),            |
|                            | 21 out of 100 | 56 out of 1098 |          | PGN_RS05650 (-1.2), PGN_RS05715 (-1.3), PGN_RS05850 (-1.1), PGN_RS06105   |
| transposase activity       | genes, 21.0%  | genes, 5.1%    | 1.87E-07 | (1.5), PGN_RS06120 (3.3), PGN_RS08715 (-1.4), PGN_RS09010 (6.5)           |
|                            | 6 out of 100  | 13 out of 1098 |          | PGN_RS02375 (-1.1), PGN_RS03145 (1.4), PGN_RS04275 (-2.9), PGN_RS07885 (- |
| electron carrier activity  | genes, 6.0%   | genes, 1.2%    | 0.0514   | 1.2), PGN_RS07895 (-1.4), PGN_RS08500 (2.2)                               |
| 3h                         |               |                |          |                                                                           |
| <b>Molecular Function</b>  |               |                |          |                                                                           |
| hydrolase activity, acting | 4 out of 24   | 15 out of 1098 |          | PGN_RS04530 (2.4), PGN_RS04535 (2.3), PGN_RS09085 (2.3), PGN_RS09090      |
| on acid anhydrides,        | genes, 16.7%  | genes, 1.4%    | 0.00941  | (2.4)                                                                     |

| catalyzing                 |              |                |         |                                                                         |
|----------------------------|--------------|----------------|---------|-------------------------------------------------------------------------|
| transmembrane              |              |                |         |                                                                         |
| movement of substances     |              |                |         |                                                                         |
| ATPase activity, coupled   |              |                |         |                                                                         |
| to transmembrane           | 4 out of 24  | 15 out of 1098 |         | PGN_RS04530 (2.4), PGN_RS04535 (2.3), PGN_RS09085 (2.3), PGN_RS09090    |
| movement of substances     | genes, 16.7% | genes, 1.4%    | 0.00941 | (2.4)                                                                   |
| ATPase activity, coupled   |              |                |         |                                                                         |
| to movement of             | 4 out of 24  | 15 out of 1098 |         | PGN_RS04530 (2.4), PGN_RS04535 (2.3), PGN_RS09085 (2.3), PGN_RS09090    |
| substances                 | genes, 16.7% | genes, 1.4%    | 0.00941 | (2.4)                                                                   |
| primary active             |              |                |         |                                                                         |
| transmembrane              | 4 out of 24  | 18 out of 1098 |         | PGN_RS04530 (2.4), PGN_RS04535 (2.3), PGN_RS09085 (2.3), PGN_RS09090    |
| transporter activity       | genes, 16.7% | genes, 1.6%    | 0.0202  | (2.4)                                                                   |
| P-P-bond-hydrolysis-       |              |                |         |                                                                         |
| driven transmembrane       | 4 out of 24  | 18 out of 1098 |         | PGN_RS04530 (2.4), PGN_RS04535 (2.3), PGN_RS09085 (2.3), PGN_RS09090    |
| transporter activity       | genes, 16.7% | genes, 1.6%    | 0.0202  | (2.4)                                                                   |
| 6h                         |              |                |         |                                                                         |
| <b>Biological Process</b>  |              |                |         |                                                                         |
|                            | 6 out of 18  | 69 out of 980  |         | PGN_RS02195 (-5.5), PGN_RS02785 (-1.3), PGN_RS03770 (-4.3), PGN_RS04120 |
| proteolysis                | genes, 33.3% | genes, 7.0%    | 0.04175 | (-1.3), PGN_RS05110 (-4.5), PGN_RS06805 (-5.5)                          |
| <b>Molecular Function</b>  |              |                |         |                                                                         |
| hydrolase activity, acting |              |                |         |                                                                         |
| on acid anhydrides,        |              |                |         |                                                                         |
| catalyzing                 |              |                |         |                                                                         |
| transmembrane              | 4 out of 19  | 15 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| movement of substances     | genes, 21.1% | genes, 1.4%    | 0.00295 | (1.6)                                                                   |
| ATPase activity, coupled   |              |                |         |                                                                         |
| to transmembrane           | 4 out of 19  | 15 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| movement of substances     | genes, 21.1% | genes, 1.4%    | 0.00295 | (1.6)                                                                   |
| ATPase activity, coupled   |              |                |         |                                                                         |
| to movement of             | 4 out of 19  | 15 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| substances                 | genes, 21.1% | genes, 1.4%    | 0.00295 | (1.6)                                                                   |
| primary active             |              |                |         |                                                                         |
| transmembrane              | 4 out of 19  | 18 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| transporter activity       | genes, 21.1% | genes, 1.6%    | 0.00641 | (1.6)                                                                   |
| P-P-bond-hydrolysis-       | 4            | 10             |         | DON DONATOO (4 C) DON DONATO (4 A) DON DOOS CONTRACTOR                  |
| driven transmembrane       | 4 out of 19  | 18 out of 1098 | 0.00545 | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| transporter activity       | genes, 21.1% | genes, 1.6%    | 0.00641 | (1.6)                                                                   |

|                          | 6 out of 19  | 67 out of 1098 |         | PGN_RS02195 (-5.5), PGN_RS02785 (-1.3), PGN_RS03770 (-4.3), PGN_RS04120 |
|--------------------------|--------------|----------------|---------|-------------------------------------------------------------------------|
| peptidase activity       | genes, 31.6% | genes, 6.1%    | 0.02267 | (-1.3), PGN_RS05110 (-4.5), PGN_RS06805 (-5.5)                          |
| active transmembrane     | 4 out of 19  | 29 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| transporter activity     | genes, 21.1% | genes, 2.6%    | 0.04404 | (1.6)                                                                   |
|                          | 4 out of 19  | 29 out of 1098 |         | PGN_RS04530 (1.6), PGN_RS04535 (1.4), PGN_RS09085 (1.4), PGN_RS09090    |
| ATPase activity, coupled | genes, 21.1% | genes, 2.6%    | 0.04404 | (1.6)                                                                   |
| Cellular Component       |              |                |         |                                                                         |
|                          | 10 out of 10 |                |         | PGN_RS02645 (1.3), PGN_RS04515 (1.4), PGN_RS04530 (1.6), PGN_RS04535    |
|                          | genes,       | 356 out of 621 |         | (1.4), PGN_RS04540 (1.1), PGN_RS04945 (-1.1), PGN_RS09080 (1.1),        |
| membrane                 | 100.0%       | genes, 57.3%   | 0.01451 | PGN_RS09085 (1.4), PGN_RS09090 (1.6), PGN_RS09105 (1.4)                 |
|                          |              |                |         | PGN_RS02645 (1.3), PGN_RS04515 (1.4), PGN_RS04530 (1.6), PGN_RS04535    |
| integral component of    | 9 out of 10  | 321 out of 621 |         | (1.4), PGN_RS04540 (1.1), PGN_RS04945 (-1.1), PGN_RS09080 (1.1),        |
| membrane                 | genes, 90.0% | genes, 51.7%   | 0.05398 | PGN_RS09085 (1.4), PGN_RS09090 (1.6), PGN_RS09105 (1.4)                 |
|                          |              |                |         | PGN_RS02645 (1.3), PGN_RS04515 (1.4), PGN_RS04530 (1.6), PGN_RS04535    |
| intrinsic component of   | 9 out of 10  | 322 out of 621 |         | (1.4), PGN_RS04540 (1.1), PGN_RS04945 (-1.1), PGN_RS09080 (1.1),        |
| membrane                 | genes, 90.0% | genes, 51.9%   | 0.05538 | PGN_RS09085 (1.4), PGN_RS09090 (1.6), PGN_RS09105 (1.4)                 |
|                          |              |                |         | PGN_RS02645 (1.3), PGN_RS04515 (1.4), PGN_RS04530 (1.6), PGN_RS04535    |
|                          | 9 out of 10  | 324 out of 621 |         | (1.4), PGN_RS04540 (1.1), PGN_RS04945 (-1.1), PGN_RS09080 (1.1),        |
| membrane part            | genes, 90.0% | genes, 52.2%   | 0.05828 | PGN_RS09085 (1.4), PGN_RS09090 (1.6), PGN_RS09105 (1.4)                 |

## (D) KEGG enrichment

| 30 min           |                                          |                                   |            |           |            |            |               |                     |
|------------------|------------------------------------------|-----------------------------------|------------|-----------|------------|------------|---------------|---------------------|
|                  | DEGs genes<br>with pathway<br>annotation | All genes with pathway annotation |            |           |            |            |               |                     |
| Pathway          | (178)                                    | (1277)                            | Pvalue     | Qvalue    | Pathway ID | Level 1    | Level 2       | DEGs List           |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS01765 (2.2),  |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS02550 (-1.0), |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS03025 (-1.1), |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS04365 (2.9),  |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS05320 (3.1),  |
|                  |                                          |                                   |            |           |            |            |               | PGN_RS05425 (-1.1), |
|                  |                                          |                                   |            |           |            |            | Metabolism of | PGN_RS05800 (2.5),  |
| Pantothenate and |                                          |                                   |            |           | ko00770    |            | cofactors and | PGN_RS07225 (-1.2), |
| CoA biosynthesis | 9 (5.06%)                                | 26 (2.04%)                        | 0.00601543 | 0.5353733 | /pgn00770  | Metabolism | vitamins      | PGN_RS09825 (2.8)   |

|                                         |                                                   |                                          |             |           |                      | Human                                | Infectious diseases:                 | PGN_RS02370 (-1.0),                                                                                                                  |
|-----------------------------------------|---------------------------------------------------|------------------------------------------|-------------|-----------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Legionellosis                           | 2 (1.12%)                                         | 3 (0.23%)                                | 0.05266794  | 0.8522605 | <u>ko05134</u>       | Diseases                             | Bacterial                            | PGN_RS06935 (2.4)                                                                                                                    |
| Vibrio cholerae pathogenic cycle        | 2 (1.12%)                                         | 3 (0.23%)                                | 0.05266794  | 0.8522605 | <u>ko05111</u>       | Human<br>Diseases                    | Infectious<br>diseases:<br>Bacterial | PGN_RS05780 (-1.1),<br>PGN_RS07030 (-1.1)                                                                                            |
| Base excision repair                    | 4 (2.25%)                                         | 11 (0.86%)                               | 0.05444762  | 0.8522605 | ko03410<br>/pgn03410 | Genetic<br>Information<br>Processing | Replication and repair               | PGN_RS01635 (-1.3),<br>PGN_RS01745 (-1.1),<br>PGN_RS04965 (-1.1),<br>PGN_RS06935 (2.4)                                               |
| 1h                                      |                                                   |                                          |             |           |                      |                                      |                                      |                                                                                                                                      |
| Pathway                                 | DEGs genes<br>with pathway<br>annotation<br>(114) | All genes with pathway annotation (1277) | Pvalue      | Qvalue    | Pathway ID           | Level 1                              | Level 2                              |                                                                                                                                      |
| •                                       |                                                   |                                          |             |           |                      |                                      |                                      | PGN_RS02365 (-1.3),<br>PGN_RS02370 (-1.1),<br>PGN_RS02375 (-1.1),<br>PGN_RS05320 (2.6),<br>PGN_RS05800 (1.4),                        |
| Carbon fixation pathways in prokaryotes | 8 (7.02%)                                         | 22 (1.72%)                               | 0.000349205 | 0.0230475 | <u>ko00720</u>       | Metabolism                           | Energy<br>metabolism                 | PGN_RS08325 (-1.5),<br>PGN_RS08340 (-1.3),<br>PGN_RS08345 (-1.4)                                                                     |
| Citrate cycle (TCA cycle)               | 6 (5.26%)                                         | 22 (1.72%)                               | 0.01007254  | 0.3052066 | ko00020<br>/pgn00020 | Metabolism                           | Carbohydrate metabolism              | PGN_RS02365 (-1.3),<br>PGN_RS02370(-1.1),<br>PGN_RS02375 (-1.1),<br>PGN_RS08325 (-1.5),<br>PGN_RS08340 (-1.3),<br>PGN_RS08345 (-1.4) |
| Legionellosis                           | 2 (1.75%)                                         | 3 (0.23%)                                | 0.02232825  | 0.3052066 | ko05134              | Human<br>Diseases                    | Infectious<br>diseases:<br>Bacterial | PGN_RS02370 (-1.1),<br>PGN_RS06935 (3.1)                                                                                             |
| Pantothenate and                        | C (5.050)                                         | 26 (2.045)                               | 0.00010151  | 0.2072045 | ko00770              | W. 1. "                              | Metabolism of cofactors and          | PGN_RS01765 (1.0),<br>PGN_RS04365 (3.6),<br>PGN_RS05320 (2.6),<br>PGN_RS05800 (1.4),<br>PGN_RS07225, (-1.0),                         |
| CoA biosynthesis                        | 6 (5.26%)                                         | 26 (2.04%)                               | 0.02312171  | 0.3052066 | /pgn00770            | Metabolism                           | vitamins                             | PGN_RS09825 (1.7)                                                                                                                    |

| Butanoate<br>metabolism                             | 6 (5.26%)                                        | 26 (2.04%)                               | 0.02312171 | 0.3052066  | ko00650<br>/pgn00650 | Metabolism        | Carbohydrate metabolism              | PGN_RS02365 (-1.3),<br>PGN_RS02370 (-1.1),<br>PGN_RS02375 (-1.1),<br>PGN_RS05800 (1.4),<br>PGN_RS05930 (-1.1),<br>PGN_RS08340 (-1.3) |
|-----------------------------------------------------|--------------------------------------------------|------------------------------------------|------------|------------|----------------------|-------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Tuberculosis                                        | 2 (1.75%)                                        | 4 (0.31%)                                | 0.04206016 | 0.4626618  | ko05152              | Human<br>Diseases | Infectious<br>diseases:<br>Bacterial | PGN_RS04365 (3.6),<br>PGN_RS06935 (3.1)                                                                                              |
| 3h                                                  |                                                  |                                          |            |            |                      |                   |                                      |                                                                                                                                      |
| Pathway                                             | DEGs genes<br>with pathway<br>annotation<br>(23) | All genes with pathway annotation (1277) | Pvalue     | Qvalue     | Pathway ID           | Level 1           | Level 2                              |                                                                                                                                      |
| Ubiquinone and other terpenoid-quinone biosynthesis | 2 (8.7%)                                         | 9 (0.7%)                                 | 0.01034971 | 0.06209826 | ko00130<br>/pgn00130 | Metabolism        | Metabolism of cofactors and vitamins | PGN_RS06090 (2.7),<br>PGN_RS08530 (1.4)                                                                                              |
| 6h                                                  |                                                  |                                          |            |            |                      |                   |                                      |                                                                                                                                      |
| Pathway                                             | DEGs genes<br>with pathway<br>annotation<br>(17) | All genes with pathway annotation (1277) | Pvalue     | Qvalue     | Pathway ID           | Level 1           | Level 2                              |                                                                                                                                      |
| Bacterial invasion of epithelial cells              | 1 (5.88%)                                        | 4 (0.31%)                                | 0.05225607 | 0.1045121  | ko05100              | Human<br>Diseases | Infectious<br>diseases:<br>Bacterial | PGN_RS04075 (1.1)                                                                                                                    |

#### Table S5. LFQ results of significantly validly detected protein/protein group of P. gingivalis upon RBC treatment

Valid detection means at least two of non-zero LFQ intensity of each protein/protein group in all samples. Significance for both Student's t-test and FDR was marked with a '+'. Highly (100%, i.e. 2-fold, change) up- and down-regulated proteins/protein groups are shaded in grey. Evidently (50% change) up- and down-regulated proteins/protein groups are marked '#'.

| Student's<br>T-test | FDR         |             | Protein                                  | Gene     |             | Old NCBI |                                                             |         |
|---------------------|-------------|-------------|------------------------------------------|----------|-------------|----------|-------------------------------------------------------------|---------|
| Significant         | Significant | log2 change | IDs                                      | name     | NCBI locus  | locus    | Protein full name                                           | Cluster |
| +                   |             | -1.53600883 | B2RK10                                   | rprY     | PGN_RS05690 | PGN_1186 | DNA-binding response regulator                              |         |
| +                   |             | -1.35672442 | B2RK43                                   | PGN_1219 | PGN_RS05860 | PGN_1219 | rRNA pseudouridine synthase                                 |         |
| +                   |             | -1.12758255 | B2RK11                                   | NrnA     | PGN_RS05695 | PGN_1187 | bifunctional oligoribonuclease/PAP phosphatase<br>NrnA      |         |
| +                   |             | -0.88798205 | B2RJU6                                   | PGN_1122 | PGN_RS05375 | PGN_1122 | NADP transhydrogenase subunit beta #                        | В       |
| +                   |             | -0.8222847  | B2RGN4                                   | PGN_0010 | PGN_RS00055 | PGN_0010 | L-threonine-O-3-phosphate decarboxylase #                   |         |
| +                   |             | -0.7969087  | B2RIZ0                                   | fbp      | PGN_RS03900 | PGN_0816 | fructose-1,6-bisphosphatase class 3#                        | В       |
| +                   |             | -0.79556402 | B2RIT0                                   | PGN_0756 | PGN_RS03600 | PGN_0756 | peptidase S9 #                                              |         |
|                     |             |             | P0C940;<br>B2RH54;<br>A0PA80;<br>Q93R80; |          |             |          |                                                             |         |
| +                   |             | -0.7803491  | Q51822                                   | fimA     | PGN_RS00835 | PGN_0180 | FimA type I fimbrilin #                                     | В       |
| +                   |             | -0.75072988 | B2RHQ1                                   | aspA     | PGN_RS01790 | PGN_0377 | aspartate ammonia-lyase #                                   |         |
| +                   |             | -0.68361028 | B2RJF0                                   | purC     | PGN_RS04680 | PGN_0976 | Phosphoribosylaminoimidazole-succinocarboxamide synthase #  | В       |
| +                   |             | -0.65891838 | B2RHB7                                   | gpmA     | PGN_RS01170 | PGN_0243 | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase # |         |
| +                   | +           | -0.63132222 | B2RIQ1                                   | PGN_0727 | PGN_RS03470 | PGN_0727 | 4-hydroxybutyryl-CoA dehydratase #                          | В       |
| +                   |             | -0.59389559 | B2RJX3                                   | ptpA     | PGN_RS05510 | PGN_1149 | prolyl tripeptidyl peptidase #                              | В       |
| +                   |             | -0.58773994 | B2RIM4                                   | PGN_0700 | PGN_RS03340 | PGN_0700 | glycosyl hydrolase family 109                               |         |
| +                   |             | -0.57545598 | B2RJZ6                                   | PGN_1172 | PGN_RS05625 | PGN_1172 | acyl-CoA dehydrogenase                                      |         |
| +                   |             | -0.55507469 | B2RJR8                                   | PGN_1094 | PGN_RS05240 | PGN_1094 | glycine dehydrogenase                                       |         |
| +                   |             | -0.5319519  | B2RKP2                                   | PGN_1418 | PGN_RS06770 | PGN_1418 | pyruvate:ferredoxin (flavodoxin) oxidoreductase             | В       |
| +                   |             | -0.52978198 | B2RM79                                   | PGN_1955 | PGN_RS09255 | PGN_1955 | phosphoglucomutase                                          |         |

| + | -0.50110181 | B2RH63            | fabH     | PGN_RS00875      | PGN_0189             | 3-oxoacyl-ACP synthase III                   |          |
|---|-------------|-------------------|----------|------------------|----------------------|----------------------------------------------|----------|
| + | -0.48857435 | B2RIZ3            | leuS     | PGN_RS03915      | PGN_0819             | leucine-tRNA ligase                          |          |
| + | -0.48362223 | B2RKG5            | PGN_1341 | PGN_RS06400      | PGN_1341             | acetyl-CoA hydrolase                         |          |
| + | -0.43403308 | B2RJY8            | PGN_1164 | PGN_RS05585      | PGN_1164             | 3-keto-5-aminohexanoate cleavage protein     | В        |
| + | -0.42922211 | B2RLW5            | rpoA     | PGN_RS08730      | PGN_1841             | DNA-directed RNA polymerase subunit alpha    |          |
| + | -0.41106923 | B2RK42            | asnS     | PGN_RS05855      | PGN_1218             | asparagine-tRNA ligase                       |          |
| + | -0.40684636 | B2RII9            | tpiA     | PGN_RS03165      | PGN_0665             | triose-phosphate isomerase                   |          |
| + | -0.3786513  | B2RJZ8            | PGN_1174 | PGN_RS05635      | PGN_1174             | electron transfer flavoprotein subunit alpha |          |
|   |             |                   |          | PGN_RS00470      | PGN_0100             |                                              |          |
| + | -0.28867531 | B2RGX4            | lysA     | ;<br>PGN_RS06085 | ;<br>PGN_1272        | diaminopimelate decarboxylase                |          |
| + | -0.27774938 | B2RLS4            | hutU     | PGN_RS08535      | PGN_1800             | urocanate hydratase                          | В        |
| + | -0.24324226 | B2RLR0            | PGN_1786 | PGN_RS08475      | PGN_1786             | DNA polymerase III subunit beta              |          |
| + | -0.22271093 | B2RIP7            | PGN_0723 | PGN_RS03450      | PGN_0723             | succinate-semialdehyde dehydrogenase         | В        |
| + | -0.17847188 | B2RJU0            | PGN_1116 | PGN_RS05345      | PGN_1116             | aminotransferase                             |          |
| + | 0.24453227  | B2RLH6            | PGN_1702 | PGN_RS08095      | PGN_1702             | protein translocase subunit SecDF            |          |
| + | 0.44878832  | B2RJY2            | PGN_1158 | PGN_RS05555      | PGN_1158             | phosphorylase                                |          |
|   |             | B2RJN1;           | _        | _                | _                    |                                              |          |
| + | 0.48650106  | Q7WRG<br>4        | recA     | PGN_RS05070      | PGN_1057             | DNA recombination/repair protein RecA        |          |
| + | 0.52819951  | B2RLR5            | PGN_1791 | PGN_RS08500      | PGN_1791             | flavodoxin                                   | A3       |
| + | 0.54462941  | B2RJL1            | PGN_1037 | PGN_RS04970      | PGN_1037             | hypothetical protein                         |          |
| + | 0.58484014  | B2RH47            | PGN_0173 | PGN_RS00805      | PGN_0173             | type I glyceraldehyde-3-phosphate            | A1       |
| + | 0.60395749  | B2RGS8            |          | PGN_RS00250      | PGN_0054             | hypothetical protein #                       | A1       |
| + | 0.60690053  | B2RKG2            | PGN_1338 | PGN_RS06390      | PGN_1338             | pyruvate, phosphate dikinase #               |          |
|   | 0.61185964  | B2RLZ4;<br>Q9RHH4 | fusA     | PGN_RS08870      | PGN_1870             | elongation factor G #                        | A2       |
| + | 0.73578389  | B2RJ49            |          | PGN_RS04175      | PGN_1870<br>PGN_0875 | DNA gyrase subunit A #                       | A4       |
| + |             | B2RJ49<br>B2RJC3  | gyrA     |                  | PGN_0873<br>PGN_0949 | ABC transporter ATP-binding protein #        | A4<br>A4 |
| + | 0.79422569  |                   | DCN 0245 | PGN_RS04530      | _                    | 1 2                                          | A4       |
| + | 0.91021601  | B2RHL9            | PGN_0345 | PGN_RS01645      | PGN_0345             | hypothetical protein #                       | A 2      |
| + | 0.9708964   | B2RJ90            | dnaK     | PGN_RS04365      | PGN_0916             | molecular chaperone DnaK #                   | A3       |
| + | 1.02133687  | B2RKS6            | groL     | PGN_RS06935      | PGN_1452             | molecular chaperone GroEL                    | A3       |
| + | 1.02934519  | B2RL63            | rpsI     | PGN_RS07575      | PGN_1589             | 30S ribosomal protein S9                     |          |

| + |   | 1.0421505  | B2RM15 | rpmB     | PGN_RS08965 | PGN_1891 | 50S ribosomal protein L28                        |    |
|---|---|------------|--------|----------|-------------|----------|--------------------------------------------------|----|
| + |   | 1.11122894 | B2RMB8 | PGN_1995 | PGN_RS09440 | PGN_1995 | hypothetical protein                             | A4 |
| + |   | 1.11420695 | B2RLW8 | rpsM     | PGN_RS08745 | PGN_1844 | 30S ribosomal protein S13                        | A2 |
| + |   | 1.14236323 | B2RI82 | hmuY     | PGN_RS02650 | PGN_0558 | hypothetical protein; heme-binding protein HmuY  | A4 |
|   |   |            |        |          |             |          | ribonucleoside-diphosphate reductase,            |    |
| + |   | 1.23391628 | B2RK50 | PGN_1226 | PGN_RS05895 | PGN_1226 | adenosylcobalamin-dependent                      | A1 |
| + |   | 1.34590054 | B2RLW4 | rplQ     | PGN_RS08725 | PGN_1840 | 50S ribosomal protein L17                        | A1 |
| + |   | 1.34729449 | B2RLZ6 | rpsL     | PGN_RS08880 | PGN_1872 | 30S ribosomal protein S12                        | A2 |
| + |   | 1.61257299 | B2RL07 | PGN_1533 | PGN_RS07315 | PGN_1533 | carbonic anhydrase                               | A3 |
| + |   | 1.75603104 | B2RGS7 |          | PGN_RS00245 | PGN_0053 | hypothetical protein                             | A1 |
| + |   | 2.15881348 | B2RHA9 | PGN_0235 | PGN_RS01130 | PGN_0235 | DNA-binding protein HU                           | A2 |
| + |   | NaN        | B2RGR5 | htpG     | PGN_RS00190 | PGN_0041 | molecular chaperone HtpG                         | A1 |
|   |   |            |        |          |             |          | succinate dehydrogenase/fumarate reductase iron- |    |
| + |   | NaN        | B2RI22 | PGN_0498 | PGN_RS02375 | PGN_0498 | sulfur subunit                                   | В  |
| + | + | NaN        | B2RIW5 | PGN_0791 | PGN_RS03775 | PGN_0791 | trigger factor                                   | A3 |
|   |   |            |        |          | PGN_RS04515 | PGN_0946 |                                                  |    |
|   |   |            |        |          | ;           | ;        |                                                  |    |
| + | + | NaN        | B2RJC0 |          | PGN_RS09105 | PGN_1920 | membrane protein                                 | A3 |
| + | + | NaN        | B2RJY7 | PGN_1163 | PGN_RS05580 | PGN_1163 | hypothetical protein                             | A3 |
| + |   | NaN        | B2RKG0 | PGN_1336 | PGN_RS06380 | PGN_1336 | DUF4876 domain-containing protein                |    |
| + | + | NaN        | B2RKP0 | PGN_1416 | PGN_RS06765 | PGN_1416 | peptidase; lysyl endopeptidasePepK               | В  |
| + | + | NaN        | B2RLD0 | rnfG     | PGN_RS07885 | PGN_1656 | electron transporter RnfG                        | В  |
| + |   | NaN        | B2RLY2 | rplN     | PGN_RS08810 | PGN_1858 | 50S ribosomal protein L14                        | A3 |
| + | + | NaN        | B2RM02 | PGN_1878 | PGN_RS08910 | PGN_1878 | alpha/beta hydrolase                             | В  |

#### Table S6. GO and KEGG enrichments of significantly regulated proteins of P. gingivalis upon RBC treatment

A total of 66 significantly regulated proteins (two sample t-test, P < 0.05) were subjected to STRING for GO and KEGG enrichment as shown in (**A**), and 31 of up-regulated and 35 down-regulated proteins were also enriched separately as shown in (**B** and **C**). NCBI old locus tags were used.

#### (A) Enrichment of a total of 66 significantly regulated proteins

Biological Process (GO)

| #Pathway ID | Pathway description                | Observed gene count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                                                                                                                                                                                      |
|-------------|------------------------------------|---------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0008150  | biological process                 | 19                  | 0.00144  | PGN_0041 (htpG), PGN_0180 (fimA), PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |
| GO.0019538  | protein metabolic process          | 13                  | 0.000994 | PGN_0041 (htpG), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                                      |
| GO.0044238  | primary metabolic process          | 18                  | 0.000994 | PGN_0041 (htpG), PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 ((groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                 |
| GO.0044267  | cellular protein metabolic process | 12                  | 0.00107  | PGN_0041 (htpG), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                                                       |

| GO.0071704 | organic substance metabolic process       | 18 | 0.00169 | PGN_0041 (htpG), PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |
|------------|-------------------------------------------|----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0044237 | cellular metabolic process                | 17 | 0.00316 | PGN_0041 (htpG), PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                  |
| GO.0043170 | macromolecule metabolic process           | 14 | 0.00324 | PGN_0041 (htpG), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                    |
| GO.0006094 | gluconeogenesis                           | 3  | 0.00591 | PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp)                                                                                                                                                                                                                                                                |
| GO.0044260 | cellular macromolecule metabolic process  | 13 | 0.00591 | PGN_0041 (htpG), PGN_0819 (leuS), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                     |
| GO.0006412 | translation                               | 9  | 0.00963 | PGN_0819 (leuS), PGN_1218 (asnS), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 ( fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                                                                                        |
| GO.1901576 | organic substance biosynthetic process    | 13 | 0.00963 | PGN_0819 (leuS), PGN_1218 (asnS), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 ( fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                                                                                        |
| GO.0006457 | protein folding                           | 3  | 0.0282  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1452 (groL)                                                                                                                                                                                                                                                               |
| GO.1901564 | organonitrogen compound metabolic process | 11 | 0.0354  | PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1218 (asnS), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                                                       |

| GO.0034641 | cellular nitrogen compound metabolic process | 12 | 0.0418 | PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1218 (asnS), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |
|------------|----------------------------------------------|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0010467 | gene expression                              | 9  | 0.0435 | PGN_0819 (leuS), PGN_1218 (asnS), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                    |

Cellular Component (GO)

| #Pathway ID | Pathway description | Observed<br>gene<br>count | FDR     | Matching proteins in network (Gene ID/Name)                                                                                                                                                                                                                                    |
|-------------|---------------------|---------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0005575  | cellular component  | 16                        | 0.00049 | PGN_0041 (htpG), PGN_0180 (fimA), PGN_0189 (fabH), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1149 (ptpA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |
| GO.0005622  | intracellular       | 14                        | 0.00049 | PGN_0041 (htpG), PGN_0189 (fabH), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                   |
| GO.0005623  | cell                | 15                        | 0.00049 | PGN_0041 (htpG), PGN_0180 (fimA), PGN_0189 (fabH), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                  |
| GO.0005737  | cytoplasm           | 14                        | 0.00049 | PGN_0041 (htpG), PGN_0189 (fabH), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                   |
| GO.0044464  | cell part           | 15                        | 0.00049 | PGN_0041 (htpG), PGN_0180 (fimA), PGN_0189 (fabH), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1057 (recA), PGN_1218 (asnS), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                  |

| GO.0005840 | ribosome | 6 | 0.0136 | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1872 (rpsL), PGN_1891 (rpmB) |
|------------|----------|---|--------|------------------------------------------------------------------------------------------------------|
|------------|----------|---|--------|------------------------------------------------------------------------------------------------------|

## KEGG

| #Pathway ID | Pathway description                          | Observed gene count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                                                                                                                                       |
|-------------|----------------------------------------------|---------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01200       | Carbon metabolism                            | 11                  | 2.90E-05 | PGN_0173, PGN_0243 (gpmA), PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_1094, PGN_1172, PGN_1338, PGN_1418                                                                                                                                                  |
| 01120       | Microbial metabolism in diverse environments | 11                  | 0.000126 | PGN_0100, PGN_0173, PGN_0243 (gpmA), PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_1338, PGN_1418, PGN_1955                                                                                                                                                  |
| 00010       | Glycolysis / Gluconeogenesis                 | 5                   | 0.000771 | PGN_0173, PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_1955                                                                                                                                                                                                              |
| 01100       | Metabolic pathways                           | 22                  | 0.00151  | PGN_0100, PGN_0173, PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0377, PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_0976 (purC), PGN_1094, PGN_1122 (rpoA), PGN_1158, PGN_1172, PGN_1226, PGN_1338, PGN_1418, PGN_1786, PGN_1800 (hutU), PGN_1841 (rpoA), PGN_1955 |
| 00650       | Butanoate metabolism                         | 4                   | 0.00848  | PGN_0498, PGN_0723, PGN_0727, PGN_1172                                                                                                                                                                                                                                            |

# (B) Enrichment of significantly up-regulated proteins

Biological Process (GO)

| #Pathway ID | Pathway description                | Observed<br>gene<br>count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                              |
|-------------|------------------------------------|---------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0044267  | cellular protein metabolic process | 10                        | 7.04E-05 | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |

| GO.0044260 | cellular macromolecule metabolic process     | 11 | 0.000162 | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |  |
|------------|----------------------------------------------|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GO.0044238 | primary metabolic process                    | 11 | 0.00251  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |  |
| GO.0006412 | translation                                  | 7  | 0.00326  | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                     |  |
| GO.0006457 | protein folding                              | 3  | 0.00437  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1452 (groL)                                                                                                                                         |  |
| GO.0010467 | gene expression                              | 7  | 0.00974  | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                     |  |
| GO.0034641 | cellular nitrogen compound metabolic process | 8  | 0.0311   | PGN_1057 (recA), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                    |  |

# Molecular Function (GO)

| #Pathway ID | Pathway description                | Observed<br>gene<br>count | FDR     | Matching proteins in network (Gene ID/Name)                                                                                                                                               |
|-------------|------------------------------------|---------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GO.0003674  | molecular function                 | 11                        | 0.00875 | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |
| GO.0003735  | structural constituent of ribosome | 6                         | 0.00875 | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                                      |
| GO.0097159  | organic cyclic compound binding    | 8                         | 0.0149  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 ( fusA), PGN_1872 (rpsL)                                                   |
| GO.1901363  | heterocyclic compound binding      | 8                         | 0.0149  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 ( fusA), PGN_1872 (rpsL)                                                   |
| GO.0032550  | purine ribonucleoside binding      | 5                         | 0.0481  | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1870 (fusA)                                                                                                       |

| GO.0032555 | purine ribonucleotide binding              | 5 | 0.0481 | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1870 (fusA) |
|------------|--------------------------------------------|---|--------|-------------------------------------------------------------------------------------|
| GO.0035639 | purine ribonucleoside triphosphate binding | 5 | 0.0481 | PGN_0041 (htpG), PGN_0916 (dnaK), PGN_1057 (recA), PGN_1452 (groL), PGN_1870 (fusA) |
| GO.0003676 | nucleic acid binding                       | 5 | 0.0495 | PGN_1057 (recA), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL) |

Cellular Component (GO)

| #Pathway ID | Pathway description | Observed<br>gene<br>count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                              |  |
|-------------|---------------------|---------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GO.0005622  | intracellular       | 10                        | 0.000203 | PGN_0041 (htpG), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |  |
| GO.0005623  | cell                | 10                        | 0.000203 | PGN_0041 (htpG), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |  |
| GO.0005737  | cytoplasm           | 10                        | 0.000203 | PGN_0041 (htpG), PGN_1057 (recA), PGN_1452 (groL), PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1870 (fusA), PGN_1872 (rpsL), PGN_1891 (rpmB) |  |
| GO.0005840  | ribosome            | 6                         | 0.000203 | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1872 (rpsL), PGN_1891 (rpmB)                                                                     |  |
| GO.0044391  | ribosomal subunit   | 2                         | 0.0424   | PGN_1858 (rplN), PGN_1872 (rpsL)                                                                                                                                         |  |

## KEGG

| #Pathway ID | Pathway description | Observed gene count | FDR     | Matching proteins in network (Gene ID/Name)                                                          |
|-------------|---------------------|---------------------|---------|------------------------------------------------------------------------------------------------------|
| 03010       | Ribosome            | 6                   | 0.00814 | PGN_1589 (rpsI), PGN_1840 (rplQ), PGN_1844 (rpsM), PGN_1858 (rplN), PGN_1872 (rpsL), PGN_1891 (rpmB) |

## (C) Enrichment of significantly up-regulated proteins

Biological Process (GO)

| #Pathway ID | Pathway description               | Observed gene count | FDR     | Matching proteins in network (Gene ID/Name)                                         |  |
|-------------|-----------------------------------|---------------------|---------|-------------------------------------------------------------------------------------|--|
| GO.0006094  | gluconeogenesis                   | 3                   | 0.00299 | PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp)                                    |  |
| GO.0019752  | carboxylic acid metabolic process | 5                   | 0.0417  | PGN_0189 (fabH), PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0819 (leuS), PGN_1218 (asnS) |  |

## KEGG

| #Pathway ID | Pathway description                          | Observed<br>gene<br>count | FDR      | Matching proteins in network (Gene ID/Name)                                                                                                                                                                                 |  |
|-------------|----------------------------------------------|---------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 01200       | Carbon metabolism                            | 9                         | 7.45E-06 | PGN_0243 (gpmA), PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_1094, PGN_1172, PGN_1418                                                                                                                |  |
| 01100       | Metabolic pathways                           | 18                        | 9.28E-06 | PGN_0100, PGN_0189, PGN_0243 (gpmA), PGN_0377, PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_0976 (purC), PGN_1094, PGN_1122, PGN_1172, PGN_1418, PGN_1786, PGN_1800 (hutU), PGN_1841 (rpoA), PGN_1955 |  |
| 01120       | Microbial metabolism in diverse environments | 9                         | 1.56E-05 | PGN_0100, PGN_0243 (gpmA), PGN_0498, PGN_0665 (tpiA), PGN_0723, PGN_0727, PGN_0816 (fbp), PGN_1418, PGN_1955                                                                                                                |  |
| 00010       | Glycolysis / Gluconeogenesis                 | 4                         | 0.000687 | PGN_0243 (gpmA), PGN_0665 (tpiA), PGN_0816 (fbp), PGN_1955                                                                                                                                                                  |  |
| 00650       | Butanoate metabolism                         | 4                         | 0.000687 | PGN_0498, PGN_0723, PGN_0727, PGN_1172                                                                                                                                                                                      |  |
| 01110       | Biosynthesis of secondary metabolites        | 8                         | 0.00413  | PGN_0100, PGN_0243 (gpmA), PGN_0498, PGN_0665 (tpiA), PGN_0816 (fbp), PGN_0976 (purC), PGN_1172, PGN_1955                                                                                                                   |  |

Table S7. Peptide mass fingerprinting identification results of hemin-agarose pull-down assay for *P. gingivalis* 

| Sample<br>Name | Protein Name                                                                             | Pg 33277<br>Accession No. | Gene ID  | MW      |
|----------------|------------------------------------------------------------------------------------------|---------------------------|----------|---------|
| 1 <sup>a</sup> | lysine-specific cysteine proteinase; Kgp                                                 | WP_012458488.1            | PGN_1728 | 188228  |
| 2              | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like | WP_012457733.1            | PGN_0729 | 43477.2 |
| 3 <sup>b</sup> | arginine-specific thiol protease, RgpA                                                   | WP_043876339.1            | PGN_1970 | 186818  |
| 4              | OmpA family protein; outer membrane protein 41; immunoreactive 43kD antigen, OmpA_C-like | WP_012457733.1            | PGN_0729 | 43477.2 |
| 5              | PorT family protein                                                                      | WP_021662358.1            | PGN_1744 | 22053.2 |
| 6              | hypothetical protein; starch binding outer membrane protein SusD                         | WP_012457401.1            | PGN_0294 | 57151.6 |

*P. gingivalis* were cultured in liquid media either with or without the supplement of  $5.0 \,\mu\text{g/mL}$  hemin and treated with or without 25  $\,\mu\text{M}$  RBC. Equal amounts of lysates were loaded onto the hemin-agarose.

<sup>&</sup>lt;sup>a</sup>, Can also be gingipain RgpA or hemagglutinin HagA.

<sup>&</sup>lt;sup>b</sup>, Can also be hemagglutinin HagA

#### **Supplementary references**

- 1. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nat. Protoc.* **3**, 163-175 (2008).
- 2. Lai, Y. T. et al. Rapid labeling of intracellular His-tagged proteins in living cells. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 2948-2953 (2015).
- 3. Lai, Y. T. et al. Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells.

  \*Metallomics 9, 38-47 (2017).
- 4. Wang, Y. C. et al. Integrative approach for the analysis of the proteome-wide response to bismuth drugs in *Helicobacter pylori*. *Chem. Sci.* **8**, 4626-4633 (2017).
- 5. Yamakura, F. et al. Inactivation and destruction of conserved Trp159 of Fesuperoxide dismutase from *Porphyromonas gingivalis* by hydrogen peroxide. *Eur. J. Biochem.* **253**, 49-56 (1998).
- 6. Potempa, J. & Nguyen, K. A. Purification and characterization of gingipains. *Curr. Protoc. Protein Sci.* **49**, 21.20.01–21.20.27 (2007).
- 7. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* **3**, research0034.0031 (2002).
- 8. Naito, M. et al. Determination of the genome sequence of *Porphyromonas gingivalis* strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in *P. gingivalis*. *DNA Res.* **15**, 215-225 (2008).
- 9. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Res.* **45**, D362-D368 (2017).
- 10. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**, 25-29 (2000).
- 11. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. *Nucleic Acids Res.* **36**, D480-D484 (2008).
- 12. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* **13**, 2498-2504 (2003).

- 13. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25 (2009).
- 14. Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* **12**, 357-360 (2015).
- 15. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).
- 16. Abdi, H. in Encyclopedia of Measurement and Statistics. (ed. N.J. Salkind) 1416 (SAGE Publications, 2006).
- 17. Kim, K. I. & de Wiel, M. A. V. Effects of dependence in high-dimensional multiple testing problems. *BMC Bioinformatics* **9**, 114 (2008).
- 18. Meuric, V., Rouillon, A., Chandad, F. & Bonnaure-Mallett, M. Putative respiratory chain of *Porphyromonas gingivalis*. *Future Microbiol*. **5**, 717-734 (2010).
- 19. Diaz, P. I. et al. Role of *oxyR* in the oral anaerobe *Porphyromonas gingivalis*. *J. Bacteriol.* **188**, 2454-2462 (2006).
- 20. Luo, W., Wang, C. Y. & Jin, L. J. Baicalin downregulates *Porphyromonas gingivalis* lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling. *PLoS One* **7**, e51008 (2012).
- 21. Wang, S. S. et al. Antibiotics induce polarization of pleural macrophages to M2-like phenotype in patients with tuberculous pleuritis. *Sci. Rep.* **7**, 14982 (2017).
- 22. Stegmann, R. et al. Structural changes of the *Escherichia coli* GroEL-GroES chaperonins upon complex formation in solution: A neutron small angle scattering study. *J. Struct. Biol.* **121**, 30-40 (1998).