Electronic Supporting Information for the paper «Primary photochemical processes for ruthenium nitrosyl complex with nitrite and picoline ligands and photo dependent inhibition of endo III DNA glycosylase»

Artem A. Mikhailov^{1,3}, Vladislav A. Nichiporenko^{1,2}, Evgeni M. Glebov^{1,2}, Vjacheslav P. Grivin^{1,2}, Victor F. Plyusnin^{1,2}, Vadim V. Yanshole^{1,4}, Darya V. Khantakova^{1,5}, Daria V. Petrova^{1,5}, Gennadiy A. Kostin^{*1,3}, Inga R. Grin^{1,5},

* Corresponding author: kostin@niic.nsc.ru

¹Novosibirsk State University, 2 Pirogova str., Novosibirsk 630090, Russia

²Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., Novosibirsk 630090, Russia

³Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrenieva ave., *Novosibirsk 630090, Russia.*

⁴International Tomography Center SB RAS,

⁵SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia.

S1. Figure S1. Laser flash photolysis (266 nm) of $[Ru^{II}(NO)(NO_2)_2(Pic)_2(OH)]$ in CH3CN. 1 cm cell, O₂ - normal, c₀ = 9.5×10⁻⁵ M. Decay of intermediate absorption: k_1^{obs} vs. (ΔD)₀. Absence of linear dependence means that the 2nd order processes are negligible. We have neither backward NO coordination nor Ru(III) disproportionation in the microsecond time domain.

S2. Figure S2. Experimental and calculated intermediate absorption spectra obtained in the experiment on laser flash photolysis (266 nm) of $[Ru^{II}(NO)(NO_2)_2(Pic)_2(OH)]$ in CH₃CN. Comparison of the data shown in Figs. 4b and 6. **a** – initial spectrum of the intermediate absorption (curve 1 in Fig. 4b) and calculated spectrum of the MS2 intermediate. **b** – spectrum in 36 µs after the laser pulse (curve 1 in Fig. 4b) and calculated spectrum of the [Ru^{III}(NO₂)₂(Pic)₂(OH)] intermediate.

S3. Lifetime of side-on isomer MS2 in the [Ru^{II}(NO)(NO₂)₂(Pic)₂(OH)] powder as a function of temperature

IR spectra were recorded on the complex powder in KBr pellets on VERTEX 80vspectrometer. Photoisomerization GS-MS and reversed MS2-GS transformation was studied in cryostat cell at a temperature range 80 - 210 K. Irradiations were performed by 445 and 980 nm LED with 100 mW/cm2 optical power.

Nitrosyl ruthenium complexes can exist as three linkage isomers (Fig. S3-1). In the ground state (further – GS) the NO fragment is coordinated via the nitrogen atom. In addition, two bond isomers exist, namely MS1, in which the NO ligand is coordinated through the oxygen atom, and side-on (η^2 -(NO)) or MS2 isomer at which nitrosyl ligand coordinated by both oxygen and nitrogen atoms to ruthenium. Bond isomers can be transferred to each other photochemically. MS1 to GS and MS2 to GS reactions can be driven by temperature as well (See Fig. S3-1).

Figure S3-1. Bond isomers in nitrosyl ruthenium complexes.

In order to estimate the lifetime of the MS2 isomer at room temperature we determined the Arrhenius parameters for the MS2 to GS reaction from the low temperature experiments with the $[Ru^{II}(NO)(Pic)_2(NO_2)_2(OH)]$ powder. MS2 isomer was obtained by the subsequent 443 and 980 nm irradiation of the solid sample in KBr. The complex was incorporated in KBr pellet using the standard procedure of the solid samples preparation for the IR spectroscopy. The irradiation was performed at 80 K temperature. Fig. S3-2 demonstrates the characteristic IR bands of the GS, MS1 and MS2 isomers. After generation of MS2 at 80 K the sample was heated to higher temperature, and the kinetics of the MS2 decay was monitored via the intensity of the characteristic IR band of MS2 (Fig. S3-3, a). The experimental kinetic curves were fitted by means of the first-order kinetic law (Fig. S3-3, b). The values of activation energy and frequency factor of the MS2 decay extracted from the Arrhenius plot are $E_A = 33.3 \pm 4.6$ kJ/mole, and

 $Ln[k_0 (s^{-1})] = 20.6 \pm 3.7$ (Fig. S3-4). Estimation of the MS2 lifetime at 295 K taken using the best-fit values gives the value of 0.9 ms.

Figure S3-2. Characteristic fragment of the $[Ru^{II}(NO)(Pic)_2(NO_2)_2(OH)]$ IR spectrum at 80 K before (black line), after 443 (blue line) and after subsequent 980 nm (red line) irradiation of the pellet (bands are doubled due to the two non-equivalent structures in the unit cell with the different surrounding near of the nitrosyl ligand).

Figure S3-3. **a** - changes in the IR spectrum of $[Ru^{II}(NO)(NO_2)_2(Pic)_2(OH)]$ after sequential irradiation (443 and 980 nm at 80 K) due to thermal transition MS2 \rightarrow GS at 155 K. **b** – kinetic curves of MS2 decay. Experimental points and 1-exponential fits.

Figure S3-4. Arrhenius plot of the rate constant of the MS2 \rightarrow GS reaction for the [Ru^{II}(NO)(\beta-Pic)₂(NO₂)₂(OH)] complex in the solid state. Treatment of the data of Fig. S3-2.

S4. DFT calculations of initial complex and potential intermediates.

Figure S4. Chosen HOMO and LUMO orbitals of $[Ru^{II}NO(\beta-Pic)_2(NO_2)_2OH]$ complex.

Table S4-1. Coordinates of optimized $[Ru^{II}NO(\beta-Pic)_2(NO_2)_2OH]$ structure.

1.Ru	-1.722260	1.157672	-0.059381
2.H	4.274178	1.803302	-0.010744
3.0	-2.375126	3.968382	-0.542112
4.O	-4.561971	1.649581	0.496552
5.H	-1.587688	1.496747	5.946374
6.H	-1.627403	-1.165782	-0.678408
7.O	-1.595532	1.723834	-2.940275
8.N	0.445761	1.386229	-0.093904
9.C	1.209673	0.499794	0.563733
10.C	1.040564	2.412813	-0.733346
11.C	2.589644	0.625634	0.609352
12.C	2.415332	2.613493	-0.737979
13.C	3.197230	1.688577	-0.040390
14.H	0.690985	-0.319827	1.037647
15.H	0.391918	3.092124	-1.269512
16.C	3.024504	3.780041	-1.466543
17.H	3.170353	-0.107879	1.151853
18.N	-1.673614	1.295242	2.101599

19.C	-2.184374	0.299596	2.843044
20.C	-1.131464	2.360829	2.723675
21.C	-2.166707	0.346936	4.228731
22.C	-1.071931	2.488610	4.105121
23.C	-1.609245	1.444960	4.864372
24.H	-2.590280	-0.543292	2.304409
25.H	-0.727551	3.138743	2.089980
26.C	-0.455151	3.701784	4.745955
27.H	-2.587785	-0.474656	4.791704
28.N	-2.066564	2.889899	-0.312009
29.O	-1.738357	-0.390583	-2.557193
30.N	-3.820012	0.781692	0.004203
31.0	-4.287950	-0.269536	-0.440649
32.N	-1.688878	0.778263	-2.144811
33.O	-1.447272	-0.759762	0.188779
34.H	-1.192750	4.231437	5.351652
35.H	-0.066788	4.393134	3.999309
36.H	3.597239	4.405032	-0.778905
37.H	2.261057	4.397796	-1.937222
38.H	3.710776	3.432154	-2.240712
39.H	0.363654	3.412200	5.406953

Table S4-2. Coordinates of optimized [Ru^{II}(η^2 -(NO))(β -Pic)₂(NO₂)₂OH] (MS2) structure.

1.Ru	-1.750050	1.157642	-0.068358
2.H	4.157875	2.095585	0.176982
3.O	-2.118361	3.183542	-0.856124
4.O	-4.589242	1.536550	-0.695106
5.H	-1.454787	1.328948	5.972413
6.H	-2.288484	-1.140750	0.356397
7.O	-1.074910	1.409147	-2.922389
8.N	0.368822	1.460521	-0.036575
9.C	1.130408	0.728153	0.794795
10.C	0.948728	2.405226	-0.798816
11.C	2.497631	0.930923	0.890190
12.C	2.309884	2.680818	-0.756980
13.C	3.090902	1.917274	0.113535
14.H	0.616333	-0.022280	1.375311
15.H	0.297125	2.945595	-1.470749
16.C	2.903889	3.757513	-1.621113
17.H	3.079919	0.320533	1.566723
18.N	-1.707049	1.278719	2.132428
19.C	-2.421578	0.412920	2.863887
20.C	-0.911853	2.164821	2.756558
21.C	-2.356946	0.411685	4.249876
22.C	-0.776780	2.225645	4.137068
23.C	-1.525875	1.319137	4.891111
24.H	-3.044966	-0.280871	2.321470
25.H	-0.356993	2.844118	2.123833
26.C	0.146719	3.223342	4.778716
27.H	-2.952691	-0.297829	4.807785
28.N	-2.173752	3.045148	0.310517

29.0	-2.165209	-0.408290	-2.527619
30.N	-3.815471	0.720399	-0.174569
31.0	-4.243489	-0.369054	0.248286
32.N	-1.650464	0.644075	-2.136740
33.0	-1.415374	-0.709515	0.343668
34.H	-0.406582	3.866852	5.466457
35.H	0.630290	3.850557	4.028950
36.H	3.372752	4.526450	-1.002297
37.H	2.140453	4.227803	-2.241511
38.H	3.676699	3.340548	-2.271041
39.H	0.919386	2.710635	5.356880

Table S4-3. Coordinates of optimized $[Ru^{III}(\beta-Pic)_2(NO_2)_2OH]$ structure.

1.Ru	-1.689559	0.873707	-0.040308
2.H	4.130610	2.338294	0.084682
3.H	-0.019654	3.654274	5.284792
4.0	-3.577364	2.532319	-0.054798
5.H	-1.509394	1.401637	5.945454
6.H	-1.484629	-1.357702	-0.813639
7.O	-1.697698	1.748944	-2.798670
8.N	0.420332	1.335083	-0.052757
9.C	1.258650	0.710938	0.793712
10.C	0.896757	2.305801	-0.856232
11.C	2.599296	1.048430	0.860253
12.C	2.225364	2.712239	-0.843779
13.C	3.084873	2.058456	0.041496
14.H	0.835300	-0.067550	1.411502
15.H	0.184388	2.759758	-1.532843
16.C	2.709027	3.804565	-1.756130
17.H	3.246730	0.522902	1.548406
18.N	-1.649360	1.039305	2.114698
19.C	-1.930256	-0.009773	2.904578
20.C	-1.326281	2.215899	2.683729
21.C	-1.887295	0.091834	4.286607
22.C	-1.261454	2.407043	4.057699
23.C	-1.550196	1.305254	4.866901
24.H	-2.180581	-0.935636	2.407571
25.H	-1.108278	3.032910	2.006858
26.C	-0.895423	3.743893	4.639806
27.H	-2.116009	-0.775052	4.891106
28.H	3.496560	3.431729	-2.413346
29.0	-1.653906	-0.405181	-2.668196
30.N	-3.663287	1.275837	-0.009650
31.0	-4.730716	0.682507	0.049168
32.N	-1.686391	0.712666	-2.111549
33.0	-1.492779	-1.016035	0.103488
34.H	-1.713799	4.131054	5.249545
35.H	-0.675786	4.471594	3.859845
36.H	3.127725	4.629011	-1.176412
37.H	1.901455	4.194135	-2.373965

1.Ru	-1.633554	1.195594	-0.013210
2.H	4.401134	1.350253	0.035529
3.H	3.957861	2.925149	-2.276621
4.0	-4.370775	1.715660	0.833334
5.H	-1.536745	1.331747	6.007064
6.H	-1.235408	-1.112794	-0.723380
7.O	-2.125618	1.800414	-2.845996
8.N	0.536079	1.282193	-0.019722
9.C	1.228575	0.362902	0.671896
10.C	1.225760	2.218608	-0.697703
11.C	2.616019	0.363252	0.714099
12.C	2.614403	2.293170	-0.719512
13.C	3.317360	1.334969	0.015683
14.H	0.630623	-0.387651	1.168671
15.H	0.633226	2.938066	-1.247177
16.C	3.320751	3.364933	-1.506541
17.H	3.132074	-0.395448	1.287981
18.N	-1.596105	1.286563	2.141313
19.C	-2.136643	0.280763	2.848399
20.C	-1.030220	2.302696	2.817417
21.C	-2.131991	0.268546	4.235799
22.C	-0.975770	2.375855	4.205662
23.C	-1.549118	1.323598	4.923070
24.H	-2.560584	-0.526701	2.269812
25.H	-0.603296	3.092558	2.214013
26.C	-0.323943	3.545267	4.894762
27.H	-2.581457	-0.562739	4.763049
28.H	0.507120	3.213615	5.520554
29.0	-1.068634	-0.049716	-2.570772
30.N	-3.678472	1.061183	0.008670
31.0	-4.293694	0.318382	-0.798761
32.N	-1.613839	0.968012	-2.059008
33.0	-1.469774	-0.868341	0.183719
34.H	-1.035240	4.059802	5.543858
35.H	0.060923	4.265595	4.173724
36.H	3.961544	3.965244	-0.857600
37.H	2.610254	4.031203	-1.994438
38.N	-1.775931	3.239462	-0.156232
39.C	-2.022432	5.825534	-0.352199
40.H	-1.454199	6.317870	0.436941
41.H	-3.072114	6.103787	-0.260574
42.H	-1.649560	6.159929	-1.320285
43.C	-1.883726	4.383499	-0.240165

Table S4-5. Coordinates of optimized [$Ru^{III}(CH_3CN)(\beta-Pic)_2(NO_2)_2OH$] structure.

1.Ru	-1.609758	1.155038	-0.006297
2.H	4.405891	1.545160	0.047675
3.H	3.925436	2.882251	-2.386556
4.O	-4.349295	2.041753	0.471712

5.H	-1.574785	1.258600	6.016619
6.H	-1.677089	-1.082264	-0.782631
7.O	-1.409439	1.916609	-2.843121
8.N	0.559488	1.310829	-0.006153
9.C	1.281080	0.487132	0.772051
10.C	1.205458	2.206528	-0.775701
11.C	2.664389	0.548133	0.811326
12.C	2.589287	2.339144	-0.794960
13.C	3.324332	1.482106	0.026515
14.H	0.728922	-0.234167	1.355509
15.H	0.584177	2.830800	-1.402648
16.C	3.255412	3.363944	-1.672040
17.H	3.208295	-0.133069	1.451349
18.N	-1.590725	1.217956	2.158413
19.C	-2.144128	0.211190	2.854802
20.C	-1.032598	2.237031	2.838063
21.C	-2.153802	0.198746	4.241120
22.C	-0.995342	2.307444	4.225780
23.C	-1.576390	1.252446	4.932871
24.H	-2.570897	-0.595813	2.277871
25.H	-0.597699	3.026915	2.241570
26.C	-0.355617	3.476103	4.924750
27.H	-2.610384	-0.631847	4.761993
28.H	0.445082	3.139621	5.585766
29.0	-1.821135	-0.178931	-2.580021
30.N	-3.713422	1.077271	0.008889
31.0	-4.319475	0.086595	-0.429618
32.N	-1.621749	0.954084	-2.086860
33.O	-1.461601	-0.759820	0.114548
34.H	-1.086737	4.004554	5.539428
35.H	0.065058	4.183521	4.211477
36.H	3.855129	4.052216	-1.073700
37.H	2.522764	3.945253	-2.229868
38.N	-1.734224	3.267027	-0.124303
39.C	-2.046526	5.834134	-0.343689
40.H	-1.494431	6.345324	0.443368
41.H	-3.106735	6.068239	-0.255873
42.H	-1.683644	6.160404	-1.317286
43.C	-1.868069	4.403193	-0.217472

Table S4-6. Calculated DFT transitions, excitation energies and oscillator strength of $[Ru^{II}NO(\beta-Pic)_2(NO_2)_2OH]$ complex. 107a – HOMO, 108a – LUMO.

Tra	ansition, occu	upancy	Energy, eV	λ, nm	f
107a	-> 108a	0.7469	2.71620	456	0.9961E-04
106a	-> 108a	0.1026			
107a	-> 109a	0.3925			
103a	-> 108a	0.2320	3.24779	382	0.1190E-01
102a	-> 109a	0.0663			
103a	-> 108a	0.4037			
107a	-> 109a	0.1205	3.51674	353	0.1257E-01
99a	-> 108a	0.1067			

106a	-> 109a	0.1051			
104a	-> 108a	0.0877			
105a	-> 109a	0.5086			
102a	-> 109a	0.2120	3.71571	334	0.2556E-02
104a	-> 109a	0.0679			
101a	-> 109a	0.3257	3 92430	316	0 3372E-02
102a	-> 111a	0.1838		010	0.007122 02
107a	->111a	0.7620	4 17452	297	0 1209E-01
106a	-> 111a	0.0591		_> /	0.1.2072 01
106a	->111a	0.4750	4 75971	260	0 2388
106a	-> 110a	0.0843			0.2000
102a	-> 110a	0.1314			
104a	-> 110a	0.1279	5.12326	242	0.1956
105a	-> 113a	0.0881			
106a	-> 114a	0.0618			
102a	-> 112a	0.2010			
102a	-> 114a	0.1464	5.34094	232	0.1900
104a	-> 113a	0.1236			
104a	-> 114a	0.0726			
104a	-> 115a	0.2718			
92a	-> 109a	0.0972	5.59444	222	0.1303
105a	->115a	0.0801			

Table S4-7. Calculated DFT transitions, excitation energies and oscillator strength of $[Ru^{II}(\eta^2-(NO))(\beta-Pic)_2(NO_2)_2OH]$ (MS2) complex. 107a – HOMO, 108a – LUMO.

Tra	ansition, occu	upancy	Energy, eV	λ, nm	f
103a 107a 106a	-> 108a -> 108a -> 108a	0.4116 0.3081 0.0712	2.2495	551	0.1738E-02
107a 101a	-> 108a -> 108a	0.4876 0.1944	2.70173	459	0.2755E-02
102a 105a 104a	-> 108a -> 108a -> 108a	0.4270 0.2750 0.1934	2.79986	442	0.5626E-02
106a 107a	-> 109a -> 109a	0.7151 0.1174	3.24907	382	0.1848E-01
102a 104a 105a 100a	-> 109a -> 109a -> 109a -> 109a	0.4225 0.1542 0.1486 0.0699	3.61772	343	0.2239E-01
103a 104a 102a	-> 109a -> 109a -> 109a	0.4447 0.1228 0.0733	3.76546	329	0.2998E-01
96a 100a 97a	-> 108a -> 109a -> 108a	0.4930 0.1753 0.1348	3.97814	312	0.1068E-01
101a 95a 105a 107a	-> 110a -> 108a -> 110a -> 110a	0.2115 0.1967 0.0811 0.0810	4.16515	298	0.2051E-01

106a	->110a	0.2171			
107a	-> 110a	0.1521			
106a	->111a	0.1195	4.67142	265	0.1150
107a	->111a	0.1166			
102a	-> 110a	0.1035			
100a	-> 110a	0.3005			0.4.60.0
102a	-> 112a	0.1001	5.20011	238	0.1630
101a	-> 112a	0.0918			
105a	-> 115a	0.1877			
104a	-> 115a	0.1162	5 73511	216	0 3002
103a	->115a	0.0894			
102a	-> 115a	0.0831			

Table S4-8. Calculated DFT transitions, excitation energies and oscillator strength of $[Ru^{III}(\beta - Pic)_2(NO_2)_2OH]$ complex. 99a – HOMO, 100a – LUMO for Beta and 100a – HOMO, 101a –

Transition, occupancy		Energy, eV	λ, nm	f	
Beta 99a	-> 100a	0.9447	0.94796	1308	0.8037E-04
Beta 98a	-> 100a	0.8715	1.44608	857	0.5091E-03
Beta 96a	-> 100a	0.8704	2.73582	453	0.3093E-03
Alpha 99a Beta 99a	-> 101a	0.4481	2.88921	429	0.4447E-02
Beta 98a Alpha 98a	-> 101a -> 101a	0.3645 0.2880	3.46867	357	0.1214E-02
Alpha 95a	->101a	0.1892			
Beta 92a	-> 100a	0.4343	3 61567	343	0 1212E-01
Beta 90a Beta 91a	-> 100a -> 100a	0.0858 0.0742	5.01507	515	0.121212101
Beta 98a	-> 102a	0.1931			
Beta 90a	-> 100a	0.1806	4 06589	305	0 1198E-01
Beta 94a	-> 101a	0.1444	1.00505	505	0.11902 01
Alpha 94a	-> 101a	0.1031			
Alpha 100a	-> 104a	0.1600			
Alpha 95a	-> 101a	0.1239			
Beta 99a	-> 104a	0.0864	4.41458	281	0.1111E-01
Beta 88a	-> 100a	0.0834			
Alpha 98a	-> 101a	0.0768			
Alpha 98a	-> 103a	0.2085			
Beta 96a	-> 102a	0.1832	4 74121	262	0.4528E-01
Beta 98a	-> 103a	0.1164	1., 1121	202	
Alpha 95a	-> 103a	0.0946			
Beta 97a	-> 103a	0.3486			
Beta 99a	-> 106a	0.0926	5.09955	243	0.3977E-01
Alpha 98a	-> 103a	0.0862			
Alpha 98a	-> 105a	0.1175			
Beta 96a	-> 105a	0.1119	5.28118	235	0.2277E-01
Beta 97a	-> 104a	0.0900			

LUMO for Alpha spin state.

Transition, occupancy		Energy, eV	λ, nm	f	
111a	-> 113a	0.6277			
111a	-> 112a	0.1780	2.82798	438	0.1399E-01
111a	->114a	0.1619			
110a	->112a	0.8210	3.27119	379	0.6048E-01
110a	-> 113a	0.1358			
109a	-> 112a	0.3220			
109a	->113a	0.2290	3.58203	346	0.1408
111a	->119a	0.1633			
109a	-> 114a	0.0825			
111a	-> 116a	0.3083			
109a	->114a	0.2600	3.64079	341	0.1601
109a	-> 113a	0.2002			
109a	-> 115a	0.0768			
109a	-> 115a	0.2156		• • • •	
111a	-> 120a	0.1407	4.15204	299	0.2559E-01
109a	-> 120a	0.0632			
111a	-> 123a	0.1705			
107a	-> 112a	0.0947			
110a	-> 122a	0.0886	4.75200	261	0.3213E-01
111a	-> 120a	0.0842			
111a	-> 121a	0.0776			
105a	-> 112a	0.1502			
110a	-> 122a	0.1442	5.20491	238	0.1828
105a	-> 113a	0.1284			
105a	-> 114a	0.0786			
109a	-> 122a	0.1926			
110a	-> 122a	0.0991	5.48456	226	0.1760
107a	-> 116a	0.0898			
107a	-> 120a	0.1761			
108a	-> 119a	0.1444	< 100 5 7		0.1000
108a	-> 118a	0.1104	6.10857	203	0.1382
108a	-> 120a	0.1037			
99a	-> 114a	0.0855			

Table S4-9. Calculated DFT transitions, excitation energies and oscillator strength of $[Ru^{II}(CH_3CN)(\beta-Pic)_2(NO_2)_2OH]^-$ complex. 111a – HOMO, 112a – LUMO.

Table S4-10. Calculated DFT transitions, excitation energies and oscillator strength of $[Ru^{III}(CH_3CN)(\beta-Pic)_2(NO_2)_2OH]$ complex. 110a – HOMO, 111a – LUMO for Beta and 111a –HOMO, 112a – LUMO for Alpha spin state.

Transition, occupancy			Energy, eV	λ, nm	f
Beta 110a	->111a	0.9598	0.65872	1882	0.4729E-04
Beta 109a	->111a	0.8998	1.09711	1130	0.2882E-03
Beta 108a	->111a	0.8800	2.30433	538	0.2822E-03
Beta 107a	->111a	0.0814			
Beta 104a	->111a	0.5266	2.75576	450	0.6432E-02
Beta 106a	->111a	0.1916			

Beta 105a	->111a	0.1624			
Beta 102a	->111a	0.7799	3.27567	379	0.1626E-01
Beta 99a	->111a	0.2538	3.73655	332	0.7530E-02
Beta 102a	->111a	0.0685			
Beta 110a	-> 114a	0.1881			
Alpha 111a	-> 116a	0.1126	4.00825	309	0.3735E-02
Beta 110a	-> 116a	0.0955			
Beta 110a	->115a	0.2633			
Beta 110a	->112a	0.1881	4 32113	287	0 1063E-01
Beta 110a	->114a	0.1368			0110002.01
Beta 109a	->115a	0.0795			
Alpha 109a	->113a	0.3047			
Beta 109a	->113a	0.0933	4.72240	263	0.3511E-01
Alpha 110a	-> 114a	0.0659			
Beta 108a	->115a	0.2185			
Beta 106a	->113a	0.1118	5.15072	241	0.2766E-01
Beta 106a	->112a	0.0985			
Alpha 104a	->116a	0.1501			
Alpha106a	->115a	0.1127	5.42883	228	0.6813E-02
Alpha 108a	-> 118a	0.0684			

Table S4-11. Chosen experimental (SCXRD) and calculated (DFT) bond distances of $[Ru^{II}NO(\beta-Pic)_2(NO_2)_2OH] \text{ complex}.$

Method	Bond length, Å						
	Ru-N(NO)	Ru-N(β-Pic)	Ru-N(NO ₂)	Ru-OH	N=O		
SCXRD	1.771	2.122; 2,129	2.065; 2,085	1.915	1.157		
	1.750	2.138; 2,133	2.075; 2,067	1.925	1.172		
DFT	1,784	2,180; 2,166	2,120; 2,132	1,953	1,145		

S5. Biochemical studies.

name	sequence	X (modification)
FAM-23U	5'-(5,6-FAM)CTCTCCCTTCXCTCCTTTCCTCT-3'	uracil
23U	5'-CTCTCCCTTC X CTCCTTTCCTCT-3'	uracil
23hoU	5'-CTCTCCCTTC X CTCCTTTCCTCT-3'	5-hydroxyuracil
23DHU	5'-CTCTCCCTTC X CTCCTTTCCTCT-3'	dihydrouracil
Compl 1	5'-AGAGGAAAGGAGGGAAGGGAGAG-3'	
20mC	5'-GAGTGAGA X GTCAAGTTGGG-3'	5-methylcytosine
Compl 2	5'-CCCAACTTGACGTCTCACTC-3'	

Table S5-1. Oligonucleotide sequences

Table S5-2. Double-stranded DNA substrates

name	Labeled strand	Complementary strand
{FAM-23U} → {FAM-23AP}§	FAM-23U	Compl 1
{*23U} → {*23AP}§	*23U	Compl 1
{*23hoU}	*23hoU	Compl 1
{*23DHU}	*23DHU	Compl 1
{*23mC}	*20mC	Compl 2

* Radioactive-labeled strand; § duplex with uracil was treated by Uracil-DNA glycosylase to generate AP-site.

Figure S5-1. *E. coli* **Endo III purification.** Lines 1 and 2, precipitate and lysate after sonication; line 3, 520–730 mM NaCl protein fraction after 5 mL HiTrap SP Sepharose FF column (1); line 4, 5, 920–1000 mM NaCl protein fraction after 1 mL HiTrap Heparin HP column (2) in gels with markers M1 and M2; line 6, *E. coli* Endo III (23 kDa) after SOURCE 15 PHE (phenyl) column and Amicon Ultra centrifugation.

Figure S5-2. Enzyme-concentration dependence. The reaction mixture (20μ l) contained duplex substrate with AP-site (A) or 5-hoU (B) in the reaction buffer and 0 – 150 nM Endo III. After 20 min at 37°C reaction was stopped by mixing with an equal volume of the loading buffer (80% formamide, 20 mM Na–EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue) and heated for 2 min at 95°C. The incised product (P) was separated from the substrate (S) on 20% denaturing PAGE (8 M urea).

Figure S5-3. **Exposure time (A) and [Ru(NO)(β-Pic)₂(NO₂)₂(OH)]-concentration (B) dependences for inhibiting DNA-glycosylase activity of Endo III**. A) The reaction mixture 1 (20 µl) contained 100 nM Endo III, 10 mM ruthenium nitrosyl complex [Ru(NO)(β-Pic)₂(NO₂)₂(OH)] ([RuNOL₅]) and was irradiated at 445 nm for 0 – 30 min on ice. B) The reaction mixture 1 (20 µl) contained Endo III, 0 – 5 mM [RuNOL₅] and was irradiated at 445 nm for 5 min on ice. After irradiation 10 µl of the reaction mixture 1 was added to 10 µl 100 nM DNA substrate with 5-hoU and incubated 20 min at 37°C. Reaction was stopped by mixing with an equal volume of the loading buffer (80% formamide, 20 mM Na–EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue) and heated for 2 min at 95°C. The incised product (P) was separated from the substrate (S) on 20% denaturing PAGE (8 M urea). The inhibition efficiency of the activity Endo III (PI) was calculated by subtracting nonspecific background activity in negative (ontrol experiments (Kneg) and normalization to the maximum of DNA glycosylase activity (Kpos), according to Equation: PI = 100% – [(P,% – Kneg)/(Kpos – Kneg)×100%].

Figure S5-4. Inhibiting DNA-glycosylase activity of Endo III on DNA substrate with dihydrouracil by photolisys products of $[Ru(NO)(\beta-Pic)_2(NO_2)_2(OH)]$ complex.

Figure S5-5. UV/vis spectroscopy data. The absorption data were acquired with the reference of buffer solution (20 mM sodium phosphate, pH 7.4, 400 mM NaCl, 30 μ M Na-EDTA, 30 μ M DTT, 16% glycerol, 80 μ g/ml BSA, 1.5% DMSO). (A) The samples contained 50 μ M Endo III with 50 μ M [Ru(NO)(β -Pic)₂(NO₂)₂(OH)] complex and were exposure by laser running at 445 nm with 100 mW cm⁻² power on ice for different time: 1 – 0 min, 2 – 1 min, 3 – 5 min, 4 – 9 min, 5 – 15 min, 6 – 20 min. (B) The samples contained 50 μ M Endo III with 50 μ M (3, 6) or 150 μ M (4,7) [Ru(NO)(β -Pic)₂(NO₂)₂(OH)] complex. The samples 1 is Endo III without [Ru(NO)(β -Pic)₂(NO₂)₂(OH)] complex. The samples 1 is Endo III without [Ru(NO)(β -Pic)₂(NO₂)₂(OH)] complex. The samples 4, 5 and 6 were exposure by laser running at 445 nm with 100 mW cm⁻² power on ice for 15 min.

Figure S5-6. AP-lyase activity of *E. col*i Endo III on AP-substrate labeled FAM (5' 6-Fluorescein). Line 1: AP-substrate with Endo III after 15 min irradiation in ice and AP-lyase reaction (20 min at 37°C); line 2: AP-substrate and $[Ru(NO)(\beta-Pic)_2(NO_2)_2(OH)]$ were irradiated 15 min in ice followed by adding the Endo III (20 min at 37°C); line 3: AP-substrate with Endo III and $[Ru(NO)(\beta-Pic)_2(NO_2)_2(OH)]$ without irradiation (20 min at 37°C); line 4: AP-substrate with Endo III and $[Ru(NO)(\beta-Pic)_2(NO_2)_2(OH)]$ after irradiation 15 min in ice and AP-lyase reaction (20 min at 37°C); line 5: AP-substrate with $[Ru(NO)(\beta-Pic)_2(NO_2)_2(OH)]$; line 6: AP-substrate. The incised product (P) was separated on a denaturing polyacrylamide electrophoresis gel (20%), subjected to the PhosphoImaging analysis and calculated as a ratio (P, %) lower band (P) to the total band intensity (S+P).

S6. HPLC-MC investigation of stationary photolysys products.

The rising peak at RT 1.30 min (Fig. S6-1) is formed by three main ruthenium-containing species (See summary Table below) and $[(\beta-Pic) + H^+]^+$ cation. The MS isotopic patterns could be attributed to the species formed during the ESI of the $[Ru^{II}(CH_3CN)(\beta-Pic)_2(NO_2)_2(OH)]^-$ complex. This is supported by the detection of free β -picoline in the mass spectrum of this peak. Note that the species with m/z = 282.989 is the Ru^I complex. The reduction of Ru^{II} to Ru^I seems to occur in the course of the electrospray ionization. Two peaks with RT 4.91 and 5.29 min give rise to the same Ru^{II} and Ru^I species. They could belong to $[Ru^{II}(\beta-Pic)_2(NO_2)_2(H_2O)(OH)]^-$ and $[Ru^{II}(\beta-Pic)_2(NO_2)_2(H_2O)_2]$ complexes (the second complex is the result of protonation of the first one). This identification is supported by our preliminary results on the $[Ru^{II}(NO)(\beta-Pic)_2(NO_2)_2(OH)]$ photolysis in aqueous solutions, which gives rise to the same species (note that the neat acetonitrile contains ca. 10^{-2} M of water, which makes possible the formation of minor photolysis products containing water molecules).

Summary of HPLC – MS studies.					
HPLC-MS study					
	RT – 1.3 min (∱)				
94.065	$(\beta-\text{Pic})^{0}\cdot\text{H}^{+}$	94.065			
282.989	$[Ru^{I}(\beta-Pic)(NO_{2})(CH_{3}CN)]^{0}\cdot H^{+}$	282.989			
328.981	$[Ru^{II}(\beta-Pic)(NO_2)_2(CH_3CN)]^0 \cdot H^+$	328.982			
381.013	$[Ru^{II}(\beta-Pic)_2(NO_2)_2]^0 \cdot H^+$	381.013			
	RT – 4.92 and 5.31 min (↑)				
335.020	$[Ru^{I}(\beta-Pic)_{2}(NO_{2})]^{0}\cdot H^{+}$	335.020			
381.013	$[Ru^{II}(\beta-Pic)_2(NO_2)_2]^0 \cdot H^+$	381.013			
	RT – 6.25 and 6.33 min	•			
335.021	$[Ru^{I}(\beta-Pic)_{2}(NO_{2})]^{0}\cdot H^{+}$	335.020			
381.013	$[Ru^{II}(\beta-Pic)_2(NO_2)_2]^0 \cdot H^+$	381.013			
474.072	$[Ru^{II}(\beta-Pic)_3(NO_2)_2]^0 \cdot H^+$	474.071			
	RT – 6.90 (↓), 7.15 and 7.59 min (↓)			
320.009	$[Ru^{II}(\beta-Pic)_2(NO_3)]^+$	320.009			
334.013	$[Ru^{I}(NO)(\beta-Pic)_{2}(NO_{2})]^{+}$	334.012			
350.008	$[Ru^{I}(NO)(\beta-Pic)_{2}(NO_{3})]^{+}$	350.007			
364.011	$[Ru^{0}(NO^{+})_{2}(\beta-Pic)_{2}(NO_{2}^{-})]^{+}$	364.010			
380.007	$[Ru^{II}(NO)(\beta-Pic)_2(NO_2)_2]^+$	380.005			
410.004	$[Ru^{I}(NO^{+})_{2}(\beta-Pic)_{2}(NO_{2}^{-})_{2}]^{+}$	410.003			
428.013	$\frac{[Ru^{II}(NO)(\beta-Pic)_2(NO_2)_2(OH)]^0}{[Ru^{II}(NO_2)_2(OH)]^0}$	428.014			
449.997	$\frac{[Ru^{II}(NO)(\beta - \beta)]^{0}}{[Ru^{II}(NO_{2})_{2}(OH)]^{0}} Na^{+}$	449.996			

Figure S6-1. Chromatogramm of acetonitrile solution of $[RuNO(\beta-Pic)_2(NO_2)_2OH]$ after irradiation.

Figure S6-2.Mass spectra (experimental – over zero and calculated – below) of fraction with retention time 1.3 min.

Figure S6-3.Mass spectra (experimental – over zero and calculated – below) of fraction with retention time 4.8-5.4 min.

Figure S6-3.Mass spectra (experimental – over zero and calculated – below) of fraction with retention time 6.0-6.6 min.

Figure S6-3.Mass spectra (experimental – over zero and calculated – below) of fraction with retention time 6.9-7.5 min.