Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for Metallomics.

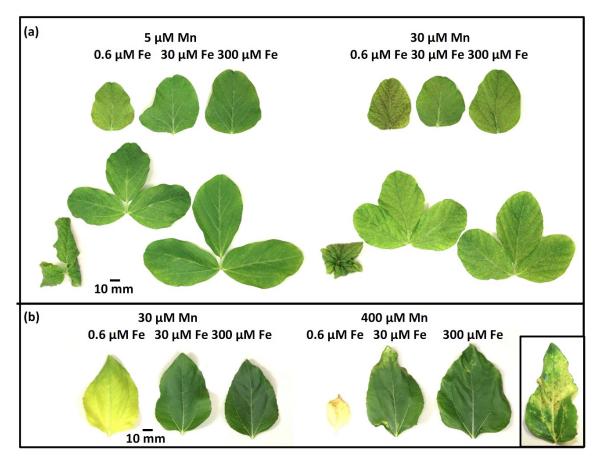
Evaluating effects of iron on manganese toxicity in soybean and sunflower using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy

F. Pax C. Blamey,^a Cui Li,;^a Daryl L. Howard,^b Miaomiao Cheng,§^c Caixian Tang,^c Kirk G. Scheckel,^d Matt R. Noerpel,^d Peng Wang,^e Neal W. Menzies,^a Peter M. Kopittke,*^a

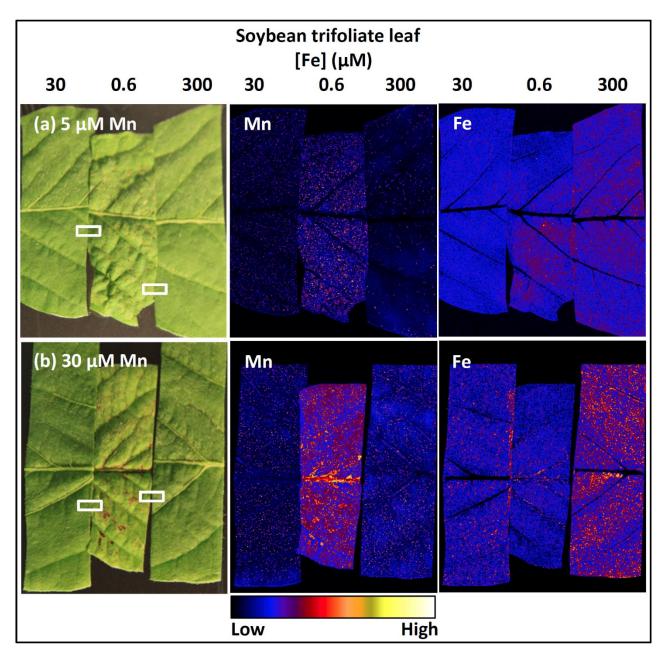
^aSchool of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. Email: p.kopittke@uq.edu.au; Fax +61-7-33651177; Tel: +61-7-33469149 ^bAustralian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia

^cCentre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia

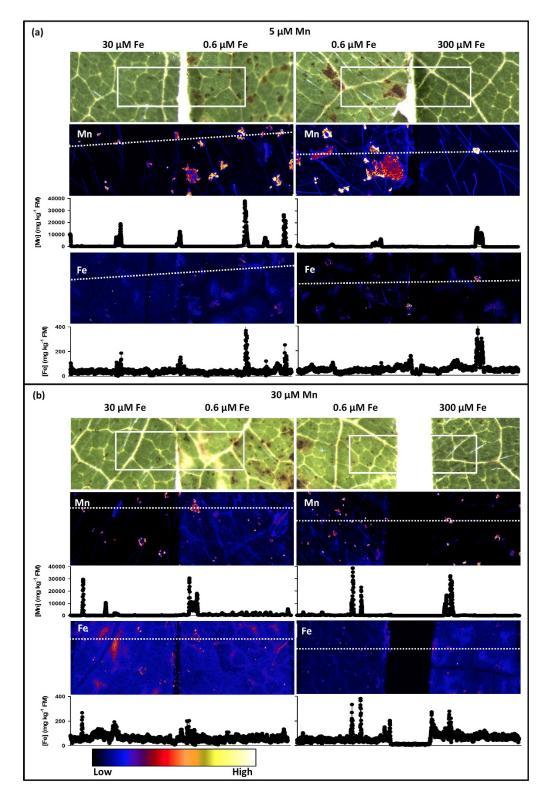
^dNational Risk Management Research Laboratory, Environmental Protection Agency, Cincinati, Ohio 45224, U.S.A.

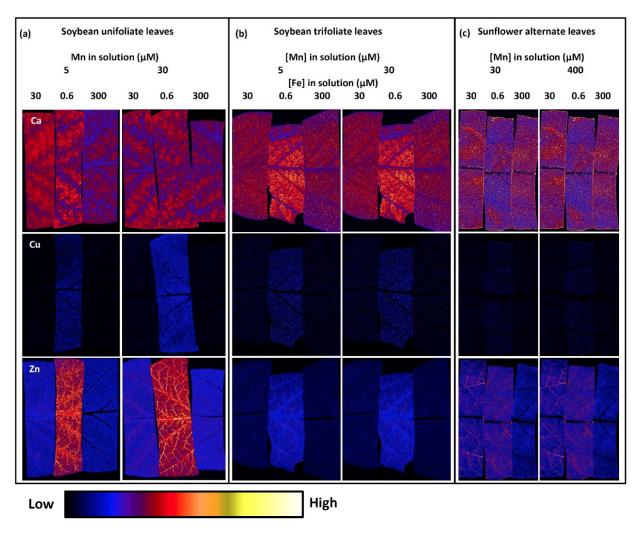

^eCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China

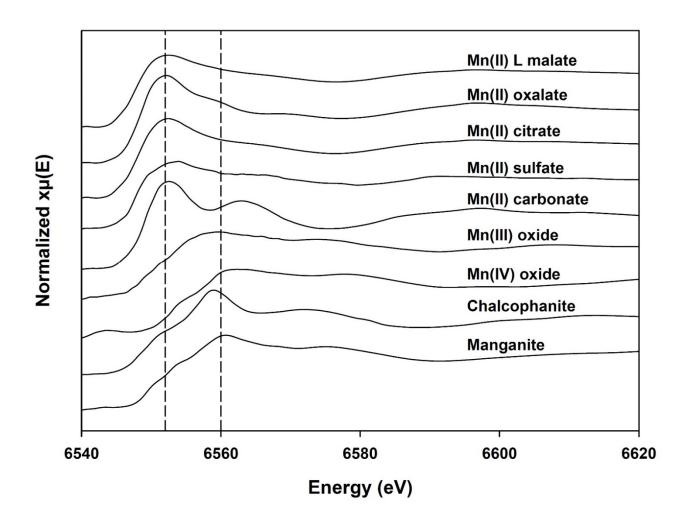
† Electronic supplementary information (ESI) available. See DOI:


‡Present address: Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China

§Present address: Murdoch University, Perth, Western Australia 6150, Australia


Supplementary Information


Supplementary Fig. S1 Visible effects of Mn and Fe in solution on soybean and sunflower leaves. (a) Unifoliate and trifoliate leaves of soybean grown for 1 week at 5 and 30 μ M Mn with 0.6, 30, and 300 μ M Fe (Experiment 2). (b) Lower alternate leaves of sunflower grown at 30 and 400 μ M Mn with 0.6, 30, and 300 μ M Fe. Insert: Unpublished image from the study of Blamey et al. (2018a) showing the chlorosis and distortion of a lower alternate leaf of sunflower grown at 400 μ M Mn and 6 μ M Fe.


Supplementary Fig. S2 Optical images and μ -XRF survey scans of Mn and Fe distributions in trifoliate leaf sections of soybean grown for 1 week in solutions with (a) 5 and (b) 30 μ M Mn and with 30, 0.6, and 300 μ M Fe in solution (Experiment 2). The white boxes in the optical images indicate the locations of the 3.05 mm \times 1.00 mm μ -XRF detailed scans and the color scale in (b) applies to all Mn and Fe distributions.

Supplementary Fig. S3 Optical images and μ -XRF detailed scans (3.05 mm \times 1.00 mm) of Mn and Fe distributions in trifoliate leaf sections of soybean grown at (a) 5 and (b) 30 μ M Mn with 30, 0.6, and 300 μ M Fe in solution (Experiment 2). The dotted white lines indicate transects along which the Mn and Fe concentrations were determined. Valid comparisons may be made between Fe treatments within each image. The color scale in (b) applies to all Mn and Fe μ -XRF scans.

Supplementary Fig. S4 μ -XRF survey scans of Ca, Cu, and Zn distributions and concentrations in sections of (a) soybean unifoliate leaves, (b) soybean trifoliate leaves, and (c) sunflower lower alternate leaves after 1 week's growth in complete nutrient solutions with two Mn treatments and three Fe treatments (Experiment 2). The color scale applies to all images.

Supplementary Fig. S5 Normalized K-edge XANES spectra of nine Mn compounds showing differences over the range from 6540 to 6620 eV. The vertical dashed lines correspond approximately to the white-line peak of Mn(II) at 6,552 eV and that of Mn(III) and Mn(IV) at 6,560 eV.

Supplementary Table S1 Main effects and interactions of Mn and Fe in solution on concentrations of nine selected nutrients in soybean unifoliate leaves on a dry mass (DM) basis. A value of 19.5 % DM may be used to convert concentrations to a fresh mass basis. (Experiment 1)

Final in Market (1) Fig.	[Mn] in unifoliate	leaves (mg kg-1)	Т	Fe means		
Fe in solution	[Mn] in unifoliate leaves (mg kg ⁻¹)		[Mn] in solution (µM)			Te means
Fe in solution (μM) 300 240 ± 40 220 ± 10 820 ± 40 520 ± 70 500 60 Mn means 250 ± 20 430 ± 90 1700 ± 230 120 ± 140 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 50 ± 10 160 ± 10 160 ± 10 50 ± 10 160 ± 10	IVIII I'C IVIII^I			-		2010 ± 220
(μM) 300 280±40 220±10 800±40 530±60 (Fe] in unifoliate leaves (mg kg¹) (Mn] in solution (μM) Femeans Mn** Fe**Mn×Fe** 0.5 5 30 (μN) 30 1260±200 150±20 360±70 530±10 (μN) 30 1260±200 150±20 360±70 530±10 (μN) Mm means 900±160 170±30 310±50 420±60 (Cu] in unifoliate leaves (mg kg¹) [Mn] in solution (μM) Femeans (EPe] in solution 30 11.7±1.3 6.2±0.2 10.9±1.1 9.9±0.8 (IpH) 300 11.7±2.9 9.0±1.0 10.0±0.1 15.3±1.1 (Era) in unifoliate leaves (mg kg¹) [Mn] in solution (μM) Fe means Mn NS Fe*Mn×Fe*Mn×Fe** <td rowspan="3"></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Mn means						
$ \begin{array}{ c c c c c }\hline [Fe] & in unifoliate leaves (mg kg^{-1}) & [Mn] & in solution (\mu M) \\ \hline Mn^{++} Fe^{++} Mn^{\times} Fe^{++} & 0.6 & 0.5 & 5 & 30 \\ \hline (Fe] & in solution & 0.6 & 90 & + 10 & 100 & + 10 & 50 & + 0 & 70 & \pm 10 \\ \hline (Fe] & in solution & 30 & 1260 & \pm 200 & 150 & \pm 20 & 360 & \pm 70 & 530 & \pm 10 \\ \hline (\mu M) & 300 & 1340 & \pm 170 & 250 & \pm 60 & 510 & \pm 100 & \pm 100 \\ \hline Mn means & 900 & \pm 160 & 170 & \pm 30 & 310 & \pm 50 & 420 & \pm 60 \\ \hline (Cu] & in unifoliate leaves (mg kg^{-1}) & [Mn] & in solution (\mu M) & Fe means \\ \hline (Fe] & in solution & 30 & 11.7 & \pm 1.3 & 6.2 & \pm 0.2 & 10.9 & \pm 1.1 & 9.9 & \pm 0.8 \\ \hline (\mu M) & 300 & 11.7 & \pm 1.3 & 6.2 & \pm 0.2 & 10.9 & \pm 1.1 & 9.9 & \pm 0.8 \\ \hline (\mu M) & 300 & 14.0 & \pm 0.9 & 7.3 & \pm 0.7 & 9.2 & \pm 0.6 & 9.9 & \pm 0.7 \\ \hline (\mu M) & 300 & 14.0 & \pm 0.9 & 7.3 & \pm 0.7 & 9.2 & \pm 0.6 & 9.9 & \pm 0.7 \\ \hline (\mu M) & 300 & 14.0 & \pm 0.9 & 7.3 & \pm 0.7 & 9.2 & \pm 0.6 & 9.9 & \pm 0.7 \\ \hline (\mu M) & 300 & 14.0 & \pm 0.9 & 7.3 & \pm 0.7 & 9.2 & \pm 0.6 & 9.9 & \pm 0.7 \\ \hline (Fe] & in solution & 30 & 170 & \pm 20 & 90 & \pm 10 & 160 & \pm 20 & 390 & \pm 20 \\ \hline (Fe] & in solution & 30 & 170 & \pm 20 & 90 & \pm 10 & 160 & \pm 20 & 150 & \pm 10 \\ \hline (\mu M) & 300 & 200 & \pm 20 & 80 & \pm 10 & 140 & \pm 20 & 140 & \pm 10 \\ \hline (\mu M) & 300 & 200 & \pm 20 & 80 & \pm 10 & 140 & \pm 20 & 140 & \pm 10 \\ \hline (Fe] & in solution & 30 & 170 & \pm 20 & 90 & \pm 10 & 160 & \pm 20 & 150 & \pm 10 \\ \hline (Mn) & 300 & 200 & 20 & 80 & \pm 10 & 140 & \pm 20 & 140 & \pm 10 \\ \hline (Fe] & in solution & 30 & 282 & \pm 0.11 & 3.02 & \pm 0.11 & 3.02 & \pm 0.10 \\ \hline (Fe] & in solution & 30 & 282 & \pm 0.07 & 3.02 & \pm 0.2 & 2.70 & \pm 0.06 & 2.81 & \pm 0.07 \\ \hline (MR) & 300 & 282 & \pm 0.07 & 3.02 & \pm 0.22 & 2.70 & \pm 0.06 & 2.81 & \pm 0.07 \\ \hline (MR) & 300 & 282 & \pm 0.07 & 3.02 & \pm 0.22 & 2.70 & \pm 0.06 & 2.81 & \pm 0.07 \\ \hline (Fe] & in solution & 30 & 2.82 & \pm 0.07 & 3.02 & \pm 0.22 & 2.70 & \pm 0.06 & 2.81 & \pm 0.07 \\ \hline (Fe] & in solution & 30 & 3.03 & \pm 0.01 & 0.34 & \pm 0.02 & 0.33 & \pm 0.02 \\ \hline (Fe] & in solution & 30 & 0.40 & \pm 0.00 & 0.42 & \pm 0.03 & 0.44 & \pm 0.02 & 0.33 & \pm 0.02 \\ \hline (Fe] & in solution & 30 & 1.88 & \pm 0.13 & 1.92 & \pm 0.14 &$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[Ea] in unifoliate 1					
$ \begin{bmatrix} \text{Fe} \mid \text{in solution} \\ \text{(}\mu\text{M}) \\ \text{300} \\ \text{300} \\ \text{3000} \\ \text{3300} \\ \text{340} \\ \text{340} \\ \text{40} \\ 4$						remeans
$ [Fe] \ in \ solution \ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $	IVIII - I e - IVIII - I			· ·		70 ± 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Fe] in solution					
Mn means						
	(μινι)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Cu] in unifoliate					
$ \begin{bmatrix} \text{[Fe] in solution} \\ (\mu\text{M}) & 300 & 11.7 \pm 1.3 & 6.2 \pm 0.2 & 10.9 \pm 1.1 \\ 300 & 11.7 \pm 1.3 & 6.2 \pm 0.2 & 10.9 \pm 1.1 \\ 300 & 14.0 \pm 0.9 & 7.3 \pm 0.7 & 9.2 \pm 0.6 & 9.9 \pm 0.7 \\ Mn \text{means} & 16.9 \pm 1.9 & 11.3 \pm 1.8 & 16.4 \pm 1.7 & 15.3 \pm 1.1 \\ \hline{[Zn] in unifoliate leaves (mg kg^+) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ 0.6 & 35.0 \pm 40 & 40.0 \pm 70 & 42.0 \pm 20 & 390 \pm 20 \\ \hline{[Fe] in solution} & 30 & 17.0 \pm 20 & 90 \pm 10 & 160 \pm 20 & 15.0 \pm 10 \\ Mn \text{means} & 24.0 \pm 20 & 190 \pm 40 & 24.0 \pm 20 & 230 \pm 20 \\ \hline{[Ca] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ 0.6 & 31.4 \pm 0.21 & 3.13 \pm 0.11 & 3.07 \pm 0.17 & 3.10 \pm 0.10 \\ \hline{[Fe] in solution} & 30 & 2.82 \pm 0.07 & 3.02 \pm 0.22 & 2.70 \pm 0.06 & 2.81 \pm 0.07 \\ Mn \text{NS Fe NS Mn} \times \text{Fe NS} & 0.5 & 5 & 30 \\ 0.6 & 3.14 \pm 0.21 & 3.13 \pm 0.11 & 3.07 \pm 0.17 & 3.10 \pm 0.10 \\ \hline{[Fe] in solution} & 30 & 2.82 \pm 0.07 & 3.02 \pm 0.22 & 2.70 \pm 0.06 & 2.81 \pm 0.07 \\ Mn \text{means} & 2.93 \pm 0.09 & 3.06 \pm 0.03 & 2.95 \pm 0.07 & 2.97 \pm 0.05 \\ \hline{[Mg] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ Mn^** Fe^** Mn \times Fe^{**} & 0.5 & 5 & 30 \\ \hline{[Mg] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ 0.6 & 0.38 \pm 0.04 & 0.42 \pm 0.03 & 0.48 \pm 0.03 & 0.44 \pm 0.02 \\ \hline{[Fe] in solution} & 30 & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.33 \pm 0.02 \\ \hline{[Mg] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ Mn^** Fe^** Mn \times Fe^{**} & 0.5 & 5 & 30 \\ \hline{[Mg] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ Mn^** Fe NS Mn \times Fe^* & 0.5 & 5 & 30 \\ \hline{[Fe] in solution} & 30 & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.33 \pm 0.02 & 0.33 \pm 0.02 \\ \hline{[K] in unifoliate leaves (%) & [Mn] in solution (\mu\text{M}) & Fe \text{means} \\ Mn^** Fe NS Mn \times Fe^* & 0.5 & 5 & 30 \\ \hline{[Fe] in solution} & 30 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline{[Fe] in solution} & 30 & 1.99 \pm 0.01 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline{[Fe] in solution} & 30 & 1.99 \pm 0.01 & 1.43 \pm 0.00 & 0.12 \pm 0.01 & 0.13 \pm 0.01 \\ \hline{[Fe] in solution} & 30 & 0.10 \pm 0.01 & 0.12 \pm 0.01$						Te means
$ [Fe] \text{ in solution} \\ (\mu\text{M}) \\ \hline \hline \\ 300 \\ \hline \\ (\mu\text{M}) \\ \hline \\ \hline \\ 300 \\ \hline \\ \hline \\ Mn \text{ means} \\ \hline \\ [A] 11.7 \pm 1.3 \\ \hline \\ 1.6.9 \pm 0.9 \\ \hline \\ Mole \\ \hline \\ Mn \text{ means} \\ \hline \\ [A] 11.3 \pm 1.8 \\ \hline \\ 16.9 \pm 1.9 \\ \hline \\ 11.3 \pm 1.8 \\ \hline \\ 16.9 \pm 1.9 \\ \hline \\ 11.3 \pm 1.8 \\ \hline \\ 16.4 \pm 1.7 \\ \hline \\ 15.3 \pm 1.1 \\ \hline \\ [A] 16.9 \pm 0.9 \\ \hline \\ [A] 16.9$	IVIII I'C IVIII^I			· ·		26.0 ± 1.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Fe] in solution					
$ \begin{array}{ c c c c c c } \hline & Mn means \\ \hline [Zn] in unifoliate leaves (mg kg^{-1}) \\ \hline Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ Mn NS Fe^{**} Mn \times Fe NS \\ \hline \\ (\mu M) \\ \hline \\ Mn means \\ \hline \\ (\mu M) \\ \hline \\ Mn means \\ \hline \\ (240 \pm 20) \\ \hline \\ Mn means \\ \hline \\ (240 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (200 \pm 20) \\ \hline \\ (200 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 40) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (230 \pm 20) \\ \hline \\ (310 \pm 20) \\ \hline \\ (240 \pm 20) \\ \hline \\ (330 \pm 20, 10) \\ \hline \\ (310 \pm 20) \\ \hline \\ (310 \pm 20$						
$ \begin{array}{ c c c c c }\hline [Zn] & in unifoliate leaves (mg kg^{-1}) \\ Mn NS Fe^{**} Mn^{*}Fe NS \\ \hline \\ 0.6 \\ \hline \\ 170 \pm 20 \\ \hline \\ 180 \pm 2$	(μινι)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[7n] in unifoliate 1					
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $						Te means
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $	WIII NO I'C WIII^					300 + 20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Fe] in solution					
Mn means 240 ± 20 190 ± 40 240 ± 20 230 ± 20 [Ca] in unifoliate leaves (%) [Mn] in solution (μM) Fe means						
$ \begin{array}{ c c c c c }\hline [Ca] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) \\ Mn NS Fe NS & Mn \times Fe NS & 0.5 & 5 & 30 \\ \hline [Fe] & in solution & 0.6 & 3.14 \pm 0.21 & 3.13 \pm 0.11 & 3.07 \pm 0.17 & 3.10 \pm 0.10 \\ (\mu M) & 300 & 2.82 \pm 0.07 & 3.02 \pm 0.22 & 2.70 \pm 0.06 & 2.81 \pm 0.07 \\ Mn & means & 2.93 \pm 0.09 & 3.06 \pm 0.08 & 2.95 \pm 0.07 & 2.97 \pm 0.05 \\ \hline [Mg] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [M*] & Fe** Mn \times Fe** & 0.5 & 5 & 30 \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [K] & in unifoliate leaves (\%) & [Mn] & in solution (\mu M) & Fe means \\ \hline [Mn*Fe NS Mn \times Fe* & 0.5 & 5 & 30 \\ \hline [Fe] & in solution & 30 & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline [Mn] & 300 & 1.85 \pm 0.13 & 1.92 \pm 0.14 & 1.89 \pm 0.10 & 1.89 \pm 0.07 \\ \hline [Mn] & means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline [Mn] & in solution (\mu M) & Fe means \\ \hline [Mn*Fe** Mn \times Fe* & 0.5 & 5 & 30 \\ \hline [Fe] & in solution & 30 & 0.10 \pm 0.01 & 0.12 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [Mn] & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [Mn] & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [Mn] & in solution (\mu M) & Fe means \\ \hline [Fe] & in solution & 30 & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline [Fe] & in solution & 30 & 0.10 \pm 0.01 & 0.12 \pm 0.01 & 0.12 \pm 0.01 & 0.12 \pm 0.01 \\ \hline [Fe] & in solution & 30 & 0.10 \pm 0.01 & 0.22 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] & in solution & 30 & 0.10 \pm 0.01 & 0.22 \pm 0.01 & 0.23 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] & in solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] & in solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.2$	(μινι)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Cal in unifoliate 1					
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $						Te means
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $	WIII NO I'C NO WIII			· ·		3 10 + 0 10
$ \begin{array}{ c c c c c } \hline (\mu \dot{M}) & 300 & 2.82 \pm 0.07 & 3.02 \pm 0.22 & 2.70 \pm 0.06 & 2.81 \pm 0.07 \\ \hline Mn means & 2.93 \pm 0.09 & 3.06 \pm 0.08 & 2.95 \pm 0.07 & 2.97 \pm 0.05 \\ \hline [Mg] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn** Fe** Mn×Fe** & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.40 \pm 0.04 & 0.27 \pm 0.02 & 0.34 \pm 0.02 & 0.33 \pm 0.02 \\ \hline (\mu M) & 300 & 0.43 \pm 0.03 & 0.31 \pm 0.01 & 0.34 \pm 0.02 & 0.33 \pm 0.02 \\ \hline (Mn) \ in \ solution & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.33 \pm 0.02 & 0.38 \pm 0.01 \\ \hline [K] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn*Fe \ NS \ Mn×Fe* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 1.98 \pm 0.17 & 1.69 \pm 0.08 & 1.64 \pm 0.09 & 1.74 \pm 0.07 \\ \hline [Fe] \ in \ solution & 30 & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline [Mn] \ means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline [Fe] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn*Fe** Fe** Mn×Fe* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.12 \pm 0.01 & 0.22 \pm 0.02 & 0.25 \pm 0.02 & 0.21 \pm 0.02 \\ \hline [Fe] \ in \ solution & 30 & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline (\mu M) & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [S] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn*Fe** Mn×Fe** & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline [S] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn*Fe** Mn×Fe NS & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.10 \pm 0.01 & 0.22 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.2$	[Fe] in solution					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c }\hline [Mg] \ in \ unifoliate \ leaves (\%) \\ Mn**Fe**Mn\times Fe** & 0.5 & 5 & 30 \\ \hline \\ [Fe] \ in \ solution \\ (\mu M) & 300 & 0.40 \pm 0.04 & 0.27 \pm 0.02 & 0.34 \pm 0.02 & 0.33 \pm 0.02 \\ Mn \ means & 0.40 \pm 0.04 & 0.27 \pm 0.02 & 0.34 \pm 0.02 & 0.33 \pm 0.02 \\ Mn \ means & 0.40 \pm 0.03 & 0.31 \pm 0.01 & 0.34 \pm 0.02 & 0.36 \pm 0.01 \\ Mn \ means & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.39 \pm 0.02 & 0.38 \pm 0.01 \\ K] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ Mn*Fe \ NS \ Mn\times Fe* & 0.5 & 5 & 30 \\ [Fe] \ in \ solution & 30 & 1.98 \pm 0.17 & 1.69 \pm 0.08 & 1.64 \pm 0.09 & 1.74 \pm 0.07 \\ Mn \ means & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ Mn \ means & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ Mn \ means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ [Fe] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ Mn**Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ Mn \ means & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ Mn \ means & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ Mn \ means & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.16 \pm 0.01 \\ Mn \ means & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ Mn**Fe** \ Mn\times Fe \ NS & 0.5 $	(μινι)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[Ma] in unifoliate					
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $						
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $	17111 1 17111 1					0.44 ± 0.02
$ \begin{array}{ c c c c c } \hline (\mu M) & 300 & 0.43 \pm 0.03 & 0.31 \pm 0.01 & 0.34 \pm 0.02 & 0.36 \pm 0.01 \\ \hline Mn \ means & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.39 \pm 0.02 & 0.38 \pm 0.01 \\ \hline [K] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn^* \ Fe \ NS \ Mn^\times Fe^* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 1.99 \pm 0.17 & 1.69 \pm 0.08 & 1.64 \pm 0.09 & 1.74 \pm 0.07 \\ \hline [Fe] \ in \ solution & 30 & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline (\mu M) & 300 & 1.85 \pm 0.13 & 1.92 \pm 0.14 & 1.89 \pm 0.10 & 1.89 \pm 0.07 \\ \hline Mn \ means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline [P] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn^** \ Fe^{**} \ Mn^\times Fe^* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.12 \pm 0.01 & 0.22 \pm 0.02 & 0.25 \pm 0.02 & 0.21 \pm 0.02 \\ \hline [Fe] \ in \ solution & 30 & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline (\mu M) & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [S] \ in \ unifoliate \ leaves (%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn^** \ Fe^* \ Mn^\times Fe \ NS & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 0.6 & 0.20 \pm 0.01 & 0.25 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.25 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.00 & 0.22 \pm 0.01 & 0.21 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm$	[Fe] in solution					
$ \begin{array}{ c c c c c c c } \hline & Mn \ means & 0.40 \pm 0.02 & 0.33 \pm 0.02 & 0.39 \pm 0.02 & 0.38 \pm 0.01 \\ \hline [K] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn^* \ Fe \ NS \ Mn^\times Fe^* & 0.5 & 5 & 30 \\ \hline \\ [Fe] \ in \ solution & 30 & 1.98 \pm 0.17 & 1.69 \pm 0.08 & 1.64 \pm 0.09 & 1.74 \pm 0.07 \\ \hline [Fe] \ in \ solution & 30 & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline (\mu M) & 300 & 1.85 \pm 0.13 & 1.92 \pm 0.14 & 1.89 \pm 0.10 & 1.89 \pm 0.07 \\ \hline Mn \ means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline [P] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn^** \ Fe^{**} \ Mn^\times Fe^* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.12 \pm 0.01 & 0.22 \pm 0.02 & 0.25 \pm 0.02 & 0.21 \pm 0.02 \\ \hline [Fe] \ in \ solution & 30 & 0.11 \pm 0.00 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline (\mu M) & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [S] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline [S] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline [S] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline [Fe] \ in \ solution & 30 & 0.20 \pm 0.01 & 0.25 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 & 0.21 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.00 & 0.22 \pm 0.01 & 0.21 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline [Fe] \ in \ solution & 0.17 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.$						
$ \begin{array}{ c c c c c c }\hline [K] & \text{in unifoliate leaves} & (\%) \\ \hline Mn^* & \text{Fe NS Mn} \times \text{Fe} * \\ \hline \\ Mn^* & \text{Fe NS Mn} \times \text{Fe} * \\ \hline \\ & 0.6 \\ \hline \\ & 1.98 \pm 0.17 \\ \hline \\ & 1.69 \pm 0.08 \\ \hline \\ & 1.64 \pm 0.09 \\ \hline \\ & 1.64 \pm 0.09 \\ \hline \\ & 1.74 \pm 0.07 \\ \hline \\ & 1.85 \pm 0.07 \\ \hline \\ & 1.85 \pm 0.13 \\ \hline \\ & 1.92 \pm 0.14 \\ \hline \\ & 1.89 \pm 0.10 \\ \hline \\ & 1.89 \pm 0.10 \\ \hline \\ & 1.89 \pm 0.07 \\ \hline \\ & 1.85 \pm 0.03 \\ \hline \\ & 1.85 \pm 0.13 \\ \hline \\ & 1.92 \pm 0.14 \\ \hline \\ & 1.89 \pm 0.10 \\ \hline \\ & 1.89 \pm 0.07 \\ \hline \\ & 1.89 \pm 0.07 \\ \hline \\ & 1.84 \pm 0.05 \\ \hline \\ & 1.83 \pm 0.04 \\ \hline \\ & [P] & \text{in unifoliate leaves} (\%) \\ \hline & [Mn] & \text{in solution} (\mu M) \\ \hline & Mn^* & \text{Fe} * Mn \times \text{Fe} * \\ \hline & 0.5 \\ \hline & 5 \\ \hline & 30 \\ \hline \\ & [Fe] & \text{in solution} \\ \hline & 0.6 \\ \hline & 0.12 \pm 0.01 \\ \hline & 0.22 \pm 0.02 \\ \hline & 0.22 \pm 0.02 \\ \hline & 0.25 \pm 0.02 \\ \hline & 0.21 \pm 0.02 \\ \hline \\ & [Fe] & \text{in solution} \\ \hline & 0.6 \\ \hline & 0.11 \pm 0.00 \\ \hline & 0.16 \pm 0.01 \\ \hline & 0.13 \pm 0.01 \\ \hline & 0.17 \pm 0.01 \\ \hline & 0.17 \pm 0.01 \\ \hline \\ & 0.23 \pm 0.01 \\ \hline \\ & 0.21 \pm 0.01 \\ \hline \\ & 0.23 \pm 0.01 \\ \hline \\ & 0.20 \pm 0.01 \\ \hline \\ $	(14-1-2)					
$\begin{array}{ c c c c c c }\hline Mn* Fe NS Mn \times Fe^* & 0.5 & 5 & 30 \\ \hline \\ [Fe] \text{ in solution} & 0.6 & 1.98 \pm 0.17 & 1.69 \pm 0.08 & 1.64 \pm 0.09 & 1.74 \pm 0.07 \\ \hline \\ [Fe] \text{ in solution} & 30 & 1.99 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline \\ [MM] & 300 & 1.85 \pm 0.13 & 1.92 \pm 0.14 & 1.89 \pm 0.10 & 1.89 \pm 0.07 \\ \hline \\ [Mn] \text{ in means} & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline \\ [P] \text{ in unifoliate leaves (%)} & [Mn] \text{ in solution (μM)} & Fe \text{ means} \\ \hline \\ [Mn] \text{ in solution (μM)} & [Mn] in $	[K] in unifoliate le					
$ [Fe] \ in \ solution \\ (\mu M) \ \ \ \ \ \ \ \ \ \ \ \ \ $						1 0 11100115
$ \begin{array}{ c c c c c } \hline [Fe] \ in \ solution \\ (\mu M) & 300 & 1.89 \pm 0.12 & 1.43 \pm 0.06 & 1.99 \pm 0.07 & 1.85 \pm 0.07 \\ \hline Mn \ means & 1.94 \pm 0.08 & 1.68 \pm 0.07 & 1.84 \pm 0.05 & 1.83 \pm 0.04 \\ \hline [P] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn** \ Fe** \ Mn\times Fe* & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 30 & 0.12 \pm 0.01 & 0.22 \pm 0.02 & 0.25 \pm 0.02 & 0.21 \pm 0.02 \\ \hline [Fe] \ in \ solution & 30 & 0.10 \pm 0.01 & 0.14 \pm 0.00 & 0.14 \pm 0.02 & 0.13 \pm 0.01 \\ \hline (\mu M) & 300 & 0.11 \pm 0.00 & 0.16 \pm 0.01 & 0.13 \pm 0.01 & 0.13 \pm 0.01 \\ \hline [S] \ in \ unifoliate \ leaves (\%) & [Mn] \ in \ solution (\mu M) & Fe \ means \\ \hline Mn** \ Fe* \ Mn\times Fe \ NS & 0.5 & 5 & 30 \\ \hline [Fe] \ in \ solution & 0.6 & 0.20 \pm 0.01 & 0.25 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.01 & 0.23 \pm 0.01 \\ \hline [Fe] \ in \ solution & 30 & 0.16 \pm 0.01 & 0.23 \pm 0.00 & 0.22 \pm 0.01 & 0.21 \pm 0.01 \\ \hline (\mu M) & 300 & 0.17 \pm 0.01 & 0.24 \pm 0.01 & 0.20 \pm 0.01 & 0.20 \pm 0.01 \\ \hline \end{array}$				1.69 ± 0.08		1.74 ± 0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Fe] in solution					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
				- ' '		
		0.6		0.22 ± 0.02		0.21 ± 0.02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
				- ' '		
[Fe] in solution (μM) 30 0.16 ± 0.01 0.23 ± 0.00 0.22 ± 0.01 0.21 ± 0.01 0.40 ± 0.01 0.17 ± 0.01 0.24 ± 0.01 0.20 ± 0.01 0.20 ± 0.01						0.23 ± 0.01
(μM) 300 0.17 ± 0.01 0.24 ± 0.01 0.20 ± 0.01 0.20 ± 0.01	[Fe] in solution					
	. ,					

Values are means ± standard error

^{**, *,} NS = significant at P \leq 0.01, significant at P \leq 0.05, and not significant, respectively

Supplementary Table S2 Main effects and interactions of Mn and Fe in solution on concentrations of nine selected nutrients in soybean trifoliate leaves on a dry mass (DM) basis. A value of 20.3 % DM may be used to convert concentrations to a fresh mass basis. (Experiment 1)

[Mn] in trifoliate leaves (mg kg ⁻¹)		ГМ	Fe means		
[Mn] in trifoliate leaves (mg kg ⁻¹) Mn** Fe** Mn×Fe**		[Mn] in solution (μM) 0.5 5 30			remeans
		70 ± 10	580 ± 60	3080 ± 170	1700 ± 300
[Fe] in solution (μM)	0.6	70 ± 10 80 ± 10	380 ± 60 230 ± 10	770 ± 50	1700 ± 300 460 ± 70
	300	80 ± 10	230 ± 10 180 ± 10	810 ± 50	470 ± 80
		80 ± 20 80 ± 10	180 ± 10 330 ± 50	810 ± 30 1550 ± 190	880 ± 130
[Fe] in trifoliate le	Mn means				
Mn** Fe** Mn×F		0.5	In] in solution (μM) 5	30	Fe means
MIII. Le. MIII.	0.6	30 ± 0	70 ± 10	50 ± 10	50 ± 0
[Eal in colution	30	30 ± 0 200 ± 30	70 ± 10 110 ± 10	30 ± 10 90 ± 10	30 ± 0 120 ± 10
[Fe] in solution (μM)	300	200 ± 30 230 ± 70	110 ± 10 110 ± 10	90 ± 10 170 ± 20	120 ± 10 170 ± 20
(μινι)					170 ± 20 110 ± 10
[Cv] in trifolioto le	Mn means		150 ± 30 90 ± 10 100 ± 10		
[Cu] in trifoliate le Mn** Fe** Mn×F		0.5	<u>In] in solution (μΜ)</u>	30	Fe means
MIII Le MIII.			5		10.1 + 1.0
[Falin colution	0.6	13.9 ± 0.9	16.1 ± 1.1	23.1 ± 0.9	19.1 ± 1.0
[Fe] in solution (μM)	30	8.4 ± 0.2	6.2 ± 0.2	8.5 ± 0.4	7.9 ± 0.3
(μινι)	300	8.4 ± 0.6	6.4 ± 0.5	9.0 ± 0.3	8.2 ± 0.3
[7]]: :C : 1	Mn means	10.2 ± 0.7	9.6 ± 1.2	13.5 ± 1.2	11.7 ± 0.7
[Zn] in trifoliate le			In] in solution (µM)		Fe means
Mn NS Fe** Mn×		0.5	5	30	210 : 20
FF 1 ' 1 '	0.6	120 ± 10	220 ± 20	240 ± 30	210 ± 20
[Fe] in solution	30	60 ± 0	70 ± 0	70 ± 0	70 ± 0
(µM)	300	60 ± 10	60 ± 0	60 ± 0	60 ± 0
FG 31	Mn means	80 ± 10	110 ± 20	130 ± 20	110 ± 10
[Ca] in trifoliate le			In] in solution (μM)		Fe means
Mn NS Fe NS Mn		0.5	5	30	
F 1	0.6	1.76 ± 0.08	2.09 ± 0.07	1.85 ± 0.09	1.89 ± 0.06
[Fe] in solution	30	1.94 ± 0.05	1.81 ± 0.05	1.74 ± 0.08	1.81 ± 0.05
(μM)	300	2.01 ± 0.16	1.81 ± 0.06	1.72 ± 0.10	1.82 ± 0.07
	Mn means	1.90 ± 0.06	1.91 ± 0.05	1.77 ± 0.05	1.84 ± 0.03
[Mg] in trifoliate l		[Mn] in solution (μM)			Fe means
Mn** Fe NS Mn×		0.5	5	30	
F 1	0.6	0.24 ± 0.01	0.27 ± 0.00	0.32 ± 0.01	0.29 ± 0.01
[Fe] in solution	30	0.32 ± 0.01	0.24 ± 0.00	0.27 ± 0.01	0.27 ± 0.01
(μM)	300	0.34 ± 0.03	0.24 ± 0.01	0.29 ± 0.01	0.29 ± 0.01
	Mn means	0.30 ± 0.01	0.25 ± 0.01	0.29 ± 0.01	0.28 ± 0.01
[K] in trifoliate lea			In] in solution (μM)		Fe means
Mn* Fe** Mn×Fe		0.5	5	30	• 10 00=
FD 3 . 1	0.6	1.89 ± 0.16	2.46 ± 0.13	2.18 ± 0.08	2.18 ± 0.07
[Fe] in solution (μM)	30	1.55 ± 0.10	1.58 ± 0.06	1.77 ± 0.05	1.67 ± 0.04
	300	1.77 ± 0.06	1.63 ± 0.12	1.94 ± 0.09	1.82 ± 0.06
	Mn means	1.74 ± 0.07	1.89 ± 0.11	1.97 ± 0.05	1.89 ± 0.04
[P] in trifoliate leaves (%)			In] in solution (µM)		Fe means
Mn** Fe** Mn×F		0.5	5	30	
[Fe] in solution (μM)	0.6	0.13 ± 0.01	0.33 ± 0.03	0.44 ± 0.03	0.34 ± 0.03
	30	0.11 ± 0.01	0.19 ± 0.01	0.17 ± 0.01	0.16 ± 0.01
	300	0.10 ± 0.00	0.20 ± 0.02	0.18 ± 0.02	0.16 ± 0.01
F07 1 12 11	Mn means	0.11 ± 0.01	0.24 ± 0.02	0.26 ± 0.02	0.22 ± 0.01
[S] in trifoliate leaves (%)			In] in solution (µM)		Fe means
Mn** Fe** Mn×Fe**		0.5	5	30	0.5-
	0.6	0.18 ± 0.01	0.27 ± 0.01	0.27 ± 0.01	0.25 ± 0.01
[Fe] in solution	30	0.19 ± 0.01	0.23 ± 0.01	0.21 ± 0.01	0.21 ± 0.00
(µM)	300	0.19 ± 0.01	0.23 ± 0.01	0.22 ± 0.01	0.22 ± 0.01
	Mn means	0.19 ± 0.00	0.24 ± 0.01	0.23 ± 0.01	0.22 ± 0.00

Values are means ± standard error

^{**, *,} NS = significant at P \leq 0.01, significant at P \leq 0.05, and not significant, respectively

Supplementary Table S3 Main effects and interactions of Mn and Fe in solution on concentrations of nine selected nutrients in sunflower lower alternate leaves on a dry mass (DM) basis. A value of 16.9 % DM may be used to convert concentrations to a fresh mass basis. (Experiment 1)

[Mn] in unifoliate leaf	f tissues (mg kg-1)	[Mn]	(uM)	Fe means
Mn**, Fe**, Mn×Fe*		30	400	i e means
, , , , , , , , , , , , , , , , , , , ,	0.6	3450 ± 300	8650 ± 500	6050 ± 610
[Fe] (μM)	30	1110 ± 120	5130 ± 340	3120 ± 460
r -1 (k)	300	810 ± 70	4450 ± 260	2630 ± 400
	Mn means	1790 ± 230	6080 ± 380	3950 ± 340
[Fe] in unifoliate leaf tissues (mg kg ⁻¹)		[Mn] (µM)		Fe means
Mn**, Fe**, Mn×Fe		30	400	
	0.6	28 ± 2	26 ± 7	27 ± 4
[Fe] (μM)	30	158 ± 28	58 ± 8	108 ± 18
	300	127 ± 22	84 ± 14	105 ± 13
	Mn means	104 ± 15	56 ± 7	80 ± 9
[Cu] in unifoliate leaf	tissues (mg kg ⁻¹)	[Mn]	(μM)	Fe means
Mn NS, Fe**, Mn×Fe	**	30 400		
	0.6	14.8 ± 0.6	25.5 ± 3.7	20.1 ± 2.1
[Fe] (μM)	30	11.6 ± 1.7	8.9 ± 0.4	10.2 ± 0.9
	300	8.9 ± 0.7	8.0 ± 0.5	8.4 ± 0.4
	Mn means	11.8 ± 0.7	14.1 ± 1.8	12.9 ± 1.0
[Zn] in unifoliate leaf		[Mn]	(μM)	Fe means
Mn*, Fe**, Mn×Fe N	S	30	400	
	0.6	113 ± 6	98 ± 10	105 ± 6
[Fe] (μM)	30	71 ± 6	53 ± 6	62 ± 5
	300	39 ± 3	36 ± 3	38 ± 2
50.7:1.0:: (0.4	Mn means	74 ± 6 62 ± 6		68 ± 4
[Ca] in leaf tissues (%		[Mn]	Fe means	
Mn**, Fe **, Mn×Fe		30	400	2.22 + 0.12
[F-1 (.)M)	0.6	2.70 ± 0.14	1.97 ± 0.17	2.33 ± 0.13
[Fe] (μM)	30	1.75 ± 0.12	1.04 ± 0.08	1.40 ± 0.10
	300	1.50 ± 0.09	0.89 ± 0.07	1.20 ± 0.08
[Mg] in leaf tissues (%	Mn means	1.99 ± 0.11 [Mn]	1.30 ± 0.10	$\frac{1.64 \pm 0.09}{\text{Fe means}}$
Mn**, Fe**, Mn×Fe		30	(μW) 400	re means
Will , I'C , Will^IC	0.6	0.23 ± 0.02	0.17 ± 0.02	0.20 ± 0.02
[Fe] (μM)	30	0.23 ± 0.02 0.17 ± 0.02	0.17 ± 0.02 0.07 ± 0.00	0.20 ± 0.02 0.12 ± 0.01
	300	0.17 ± 0.02 0.15 ± 0.01	0.07 ± 0.00 0.06 ± 0.01	0.12 ± 0.01 0.11 ± 0.01
	Mn means	0.19 ± 0.01 0.19 ± 0.01	0.00 ± 0.01 0.10 ± 0.01	0.14 ± 0.01 0.14 ± 0.01
[K] in leaf tissues (%)		[Mn]	Fe means	
Mn NS, Fe**, Mn×Fe		30 400		1 c means
,	0.06	4.21 ± 0.46	4.78 ± 0.56	4.49 ± 0.36
[Fe] (μM)	30	2.65 ± 0.19	2.08 ± 0.16	2.36 ± 0.14
[2 0] ([22.2)	300	2.41 ± 0.25	2.30 ± 0.16	2.36 ± 0.15
	Mn means	3.09 ± 0.23	3.05 ± 0.29	3.07 ± 0.18
[P] in leaf tissues (%)			[Mn] (µM)	
M**, Fe**, Mn×Fe**		30	400	
[Fe] (μM)	0.6	0.15 ± 0.02	0.89 ± 0.23	0.52 ± 0.14
	30	0.14 ± 0.02	0.11 ± 0.01	0.12 ± 0.01
	300	0.11 ± 0.01	0.11 ± 0.01	0.11 ± 0.01
	Mn means	0.13 ± 0.01	0.37 ± 0.10	0.25 ± 0.05
[S] in leaf tissues (%)	L	[Mn]	(μM)	Fe means
Mn NS, Fe**, Mn×Fe		30	400	
FT 7 (3.5)	0.6	0.51 ± 0.03	0.52 ± 0.07	0.51 ± 0.03
[Fe] (μM)	30	0.38 ± 0.04	0.29 ± 0.03	0.33 ± 0.03
	300	0.32 ± 0.03	0.29 ± 0.03	0.30 ± 0.02
Values are means + star	Mn means	0.40 ± 0.02	0.36 ± 0.03	0.38 ± 0.02

Values are means \pm standard error

^{**, *,} NS = significant at $P \le 0.01$, significant at $P \le 0.05$, and not significant, respectively

Supplementary Table S4 Effects of Mn and Fe in solution on the concentrations of micronutrients and macronutrients in soybean and sunflower leaf tissues on a dry mass basis (Experiment 3).

Tissue	Solution composition (µM)		Micronutrient concentration in leaf tissues (mg kg ⁻¹)						
	[Mn] [Fe] [Mn]		[Fe]	[Fe] [0		Cu]	[Zn]		
Soybean unifoliate leaf	5	0.6	380 ±	50	67 ± 6		20.3 ± 2.5	170 ± 11	
	5	30	160 ±	10 14	46 ± 13		7.8 ± 0.6	78 ± 5	
Soybean trifoliate leaf	5	0.6	360 ±	30	39 ± 2		13.2 ± 1.2	66 ± 4	
	5	30	190 ±	20 1	10 ± 10		7.2 ± 0.2	45 ± 3	
Sunflower alternate leaf	30	0.6	3100 ± 2	260	24 ± 2		15.0 ± 0.2	79 ± 5	
	30	30	1020 ±	160	62 ± 6		9.4 ± 0.6	39 ± 2	
Tissue	Solution composition (µM)		Macronutrient concentration in leaf tissues (%)						
	[Mn]	[Fe]	[Ca]	[Mg]	[]	K]	[P]	[S]	
Soybean unifoliate leaf	5	0.6	2.24 ± 0.12	0.28 ± 0.03	2.0	7 ± 0.04	0.12 ± 0.01	0.19 ± 0.01	
	5	30	2.12 ± 0.07	0.17 ± 0.01	1.9	7 ± 0.11	0.09 ± 0.01	0.16 ± 0.01	
Soybean trifoliate leaf	5	0.6	1.29 ± 0.09	0.23 ± 0.03	1.7	8 ± 0.07	0.18 ± 0.02	0.22 ± 0.02	
	5	30	1.14 ± 0.07	0.19 ± 0.01	1.5	4 ± 0.14	0.15 ± 0.02	0.21 ± 0.01	
Sunflower alternate leaf	30	0.6	3.03 ± 0.27	0.29 ± 0.02	3.0	6 ± 0.04	0.15 ± 0.01	0.62 ± 0.05	
	30	30	1.96 ± 0.63	0.22 ± 0.01	1.7	1 ± 0.13	0.09 ± 0.01	0.28 ± 0.02	

Values are means ± standard error