Supplementary methodology

Evaluation of robust normalizers suitable for qPCR analysis of mRNA levels in cardiac tissues from non-diabetic, STZ-diabetic and TETA-treated diabetic rats

Real-time qPCR is a powerful method for analysing changes in gene expression in tissues^{1,2}. Data normalization using sufficiently robust normalizers is crucial for accurate quantification of mRNA expression¹⁻⁴. In this experiment, we measured expression-stability of 12 candidate reference genes (CRGs) (*18S rRNA, Gapdh, Actb, B2m, Hprt1, Ubc, Ndc1, Ppia, Rpl13a, U2af, Tbp and Ywhaz*) to identify stably-expressed CRGs that are suitable for use as robust normalizers for qPCR analysis of mRNA levels in cardiac tissues from non-diabetic, diabetic and TETA-treated diabetic rats. The objective of selecting robust normalizers was to avoid errors that all too frequently occur with the use of single-gene normalizers. This approach is consistent with international best-practice recommendations for quantitative measurements of mRNAs by RT-qPCR⁵.

RT-qPCR was performed using a LightCycler 480 System (Roche) according to the manufacturer's instructions, with SYBR Green I Master Mix (Roche). Reactions were performed in triplicate in 384multiwell plates with pre-incubation for 5 min at 95°C, followed by 45 cycles, each of 10 s at 95°C, 15 s at 60°C and 20 s at 72°C. In each qPCR run, a standard curve for each respective gene was generated using the 6-point dilution series (which ranged between 0.01 and 25 ng). To check for possible genomic DNA contamination and multiplex products, a melting curve was generated for every run. The sequences of each gene-specific primer pair used are shown in Suppl. Table 2 below.

For data analysis, Threshold-values (crossing point Cp) and relative mRNA concentrations of each given reference gene were obtained for every qPCR reaction using LC 480 Software v1.5 (Roche). Stability of each reference genes was analyzed using the geNorm (GN)⁶ and NormFinder (NF)^{1,3} algorithmic approaches: http://medgen.ugent.be/~jvdesomp/genorm/ and

http://www.mdl.dk/publicationsnormfinder.htm, respectively. We found that *Rpl13a, Tbp* and *Ndc1* are most stably-expressed CRGs, and the geometric mean of the expression of these three CRGs forms a best robust normalizer for qPCR analysis in the selected cardiac tissues. This study has therefore used this robust normalizer to measure relative mRNA expression of genes involved in regulation of copper transport, as presented in Suppl. Table 2 below. *Statistical analysis was performed using unpaired* Student's *t*-tests for pairwise comparisons and/or ANOVA for between-group comparisons. This statistical approach was deemed adequate as the comparisons made were *a priori* defined.

Supplementary References:

- 1. Andersen, C., Jensen, J. L., & Orntoft, T. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res* **64**, 5245-5250 (2004).
- 2. Van Guilder, H., Vrana, K. & Freeman, W. Twenty-five years of quantitative PCR for gene expression analysis. *BioTechniques* 44, 619-629 (2008).
- 3. Jafari Anarkooli, I., Sankian, M., Ahmadpour, S., Varasteh, A. & Haghir, H. Evaluation of Bcl-2 family gene expression and caspase-3 activity in hippocampus of STZ-induced diabetic rats. *Exp Diabetes Res* **638467**, 1-6 (2008).
- 4. Mane, V., Heuer, M., Hillyer, P., Navarro, M. & Rabin, R. Systematic method for determining an ideal housekeeping gene for real-time PCR analysis. *J Biomol Tech* **19**, 342-347 (2008).
- 5. Bustin, S.A., *et al.* The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. **55**, 611-622 (2009).
- 6. Vandesompele, J., *et al.* Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* **3**, R0034 (2002).

Gene name	Symbol	Sequences (5'-3')					
COX17 cytochrome c oxidase copper chaperone	Cox17	tcaggagaagaagcctctgaa ttctcctttctcaatgatgcac					
COX11 cytochrome c oxidase copper chaperone	Cox11	gtggtcccagagttctcacag; catgcatatacaggcaaaacg					
SCO1 cytochrome c oxidase assembly protein	Scol	ggatctttattggctggaatga; gtaaaggcttcccaatgctg					
SCO2 cytochrome c oxidase assembly protein	Sco2	caacaacagcggacagagg; cagggcagtgagtaaaaccaa					
Cytochrome c oxidase subunit I, mitochondrial	Mt-CoI	gctggaacaggatgaacagtat; tcctaagatagaagacaccccggcta					
Cytochrome c oxidase subunit II, mitochondrial	Mt-CoII	tcctaagatagaagacaccccggcta caagcacaatagacgcccaagaa; agaattcgtagggagggaaggg tttgaagccgcagcatgatact; tttttttttttttttttttttttttttttt					
Cytochrome c oxidase subunit III, mitochondrial	Mt-CoIII	tttgaagccgcagcatgatact;					
Transcription factor A, mitochondrial	tfam	ctgatggccattacatgtgg					
Single stranded DNA binding protein 1	ssbp1						
PPAR-gamma co-activator 1 alpha	Pgc1a	ggcacgcagtcctattcatt; tcctttggggtctttgagaa					
18S ribosomal RNA	185	aaatcagttatggttcctttggtc gctctagaattaccacagttatccaa					
Beta-actin	Actb	getgtattcccctccatcgtg cacggttggcctttagggttcag					
Glyceraldehydes-3-phosphate dehydrogenase	Gapdh	tgacgtgccgcctggagaaa agtgtagcccaagatgcccttcag					
Beta-2-microglobulin	B2m	ttctggtgccttgtctcactga cagtatgttcggcttcccattc					
Hypoxanthine guanine phosphoribosyl transferase	Hprt1	gcttgctggtgaaaaggacctctcgaag ccctgaagtactcattatagtcaagggcat					
Ubiquitin C	Ubc	aggtcaaacaggaagacagacgta tcacacccaagaacaagcaca					
Peptidylprolyl isomerase A	Ppia	cgcgtctccttcgagctgtttg tgtaaagtcaccaccctggca					
U2 auxiliary factor 36 kDa subunit	U2af	ccattgccctcttgaacatt					

Supplementary Table 1. Sequences of primers used for qPCR analysis.

		ctteecegtacttetettee
Phospholipase A2	Ywhaz	tettgtcaccaaccattcca
		aggggaagcgggtatcttag
Ribosomal protein L13a	Rpl13a	acaagaaaaagcggatggtg;
	1.pri Su	ttccggtaatggatctttgc
TATA box binding protein	Tbp	agaacaatccagactagcagca;
in the box binding protein	10p	gggaacttcacatcacagctc
NDC1 transmembrane nucleoporin	Ndc1	ttcccaaagcatggattagc;
	11401	cagccagacatggtagagca
Haemoglobin-alpha	GloA	caccaagacctacttccctcactt
	0,011	agagcatcggcgaccttct
Cytochrome b	e b CytB cca	
	Cyte	ttttatctgcatctgagtttaatcctgt

Supplementary full-length images of the western blot gels for Fig 1B and 1C, Fig 2B and 2C, Fig 3B, Fig 4E and 4F and 4G, Fig 7B.

Cytosolic
- Cox17

Fig.1B

Full-length images of the western blot gels for Fig. 1B with approximate cropped regions used for figures marked with rectangles.

Fig. 1C

Full-length images of the western blot gels for Fig. 1C with approximate cropped regions used for figures marked with rectangles.

Full-length images of the western blot gels for Fig. 2B with approximate cropped regions used for figures marked with rectangles.

Fig. 2C

Full-length images of the western blot gels for Fig. 2C with approximate cropped regions used for figures marked with rectangles.

Full-length images of the western blot gels for Fig. 3B with approximate cropped regions used for figures marked with rectangles.

Fig. 4E

Full-length images of the western blot gels for Fig. 4E with approximate cropped regions used for figures marked with rectangles.

Full-length images of the western blot gels for Fig. 4F with approximate cropped regions used for figures marked with rectangles.

								* -	**	*				-	-
tCoIII →	_	_	_	_	_	_	-	_	_	-	_	_	_	-	
	-	-	-		-	-	-		-	-					

Fig. 4G

Full-length images of the western blot gels for Fig. 4G with approximate cropped regions used for figures marked with rectangles.

Full-length images of the western blot gels for Fig. 7B with approximate cropped regions used for figures marked with rectangles.

Variable	Control	Diabetic	TETA-treated diabetic
Strain	Wistar	Wistar	Wistar
Age (weeks)	22-23	22-23	22-23
Body weight (g)	573 ± 16	$220 \pm 9*$	$290 \pm 21*$
Blood glucose (mM)	5.8 ± 0.2	$29.8\pm0.7\text{*}$	$27.0 \pm 1.2*$
Heart weight (g)	1.58 ± 0.04	$1.03 \pm 0.06*$	$1.2 \pm 0.1*$
Heart weight/Body weight (x10 ⁻³)	2.76 ± 0.01	$4.7 \pm 0.1*$	$4.1 \pm 0.2*$
Cardiac output (ml/min)	79.2 ±3.2	$53.3 \pm 8.1*$	$78.0\pm4.0^{\scriptscriptstyle\#}$
+dP _{LV} /dt max (mmHg/s)	5840 ± 1429	$2249 \pm 162*$	$4082 \pm 196^{\#}$
-dP _{LV} /dt min (mmHg/s)	-5795 ± 1472	$-1952 \pm 144*$	$-3366 \pm 125^{\#}$
Myocardial copper content	50 ± 7	$28.7 \pm 2*$	$48\pm6^{\#}$
(µg/g dry LV tissue)			

Supplementary Table 2. Relevant characteristics and hemodynamic parameters in isolated perfused hearts of normal control, diabetic, and TETA-treated diabetic male rats

Measurements of steady-state cardiac function were made at 20 cm preload and 75 mmHg afterload of hearts paced at 300 beats/min. All values represent means \pm SEM. Data were analysed using two-way ANOVA with post-hoc Tukey's tests. **P* < 0.05 vs control; **P* < 0.05 vs diabetic; n=9/group. Values of -dP_{LV}/dt min demonstrate the occurrence of diastolic dysfunction in diabetic rats that was reversed by TETA-treatment, which also restored LV copper content to normal.

Supplementary images for Figure 1D.

Separate images for mt-CoII, DAPI, and WGA for the combined images shown in Fig. 1D.

Supplementary images for Figure 2E.

Separate images for Cox11, DAPI, and WGA for the combined images shown in Fig. 2E

Supplementary images for Figure 3C.

Separate images for mt-CoII, DAPI, and WGA for the combined images shown in Fig. 3C.

