ELECTRONIC SUPPLEMENTARY INFORMATION

Distribution of aluminium in hydrated leaves of tea (*Camellia sinensis*) using synchrotron- and laboratory-based X-ray fluorescence microscopy

Antony van der Ent¹, Peter M. Kopittke², David J. Paterson³, Lachlan W. Casey⁴, Philip Nti Nkrumah¹

¹The University of Queensland, Sustainable Minerals Institute, St Lucia, Queensland, 4072, Australia.

²The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia.

³Australian Synchrotron, ANSTO, Clayton, Victoria, 3086, Australia.

⁴ The University of Queensland, Centre for Microscopy and Microanalysis, St Lucia, Queensland, 4072, Australia.

Suppl Fig 1. Synchrotron-based XFM elemental maps of Al, Ca and K of a hydrated leaf portion of *Camellia sinensis*.

Suppl Fig 2. Synchrotron-based XFM elemental maps of Al, Ca, K and P of a hydrated petiole cross-section of *Camellia sinensis*.

Suppl Fig 3. Synchrotron-based XFM elemental maps of Al, Ca, K, S, P and Cl of a hydrated leaf cross-section of *Camellia sinensis*.