| 1        |                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | <b>Electronic Supplementary Information</b>                                                                                                   |
| 3        |                                                                                                                                               |
| 4<br>5   | Synthesis of Nanostructured Catalysts by Surfactant-Templating of Large-Pore<br>Zeolites                                                      |
| 6        |                                                                                                                                               |
| 7        | Aqeel Al-Ani <sup>a,b*</sup> , Josiah J. C. Haslam <sup>a</sup> , Natalie E. Mordvinova <sup>c</sup> , Oleg I. Lebedev <sup>c</sup> , Aurélie |
| 8        | Vicente <sup>d</sup> , Christian Fernandez <sup>d</sup> and Vladimir Zholobenko <sup>a</sup> *                                                |
| 9<br>10  | <sup>a</sup> School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG,<br>United Kingdom                     |
| 11       | <sup>b</sup> Oil Marketing Company (SOMO), Baghdad, Iraq                                                                                      |
| 12<br>13 | <sup>c</sup> Laboratoire CRISMAT ENSICAEN UMR CNRS 6508, 6 Boulevard du Maréchal Juin, 14050,<br>Caen Cedex 04, France                        |
| 14<br>15 | <sup>d</sup> Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000<br>Caen, France                            |
| 16       |                                                                                                                                               |
| 17       |                                                                                                                                               |
| 18       |                                                                                                                                               |
| 19       |                                                                                                                                               |
| 20       |                                                                                                                                               |
| 21       |                                                                                                                                               |
| 22       |                                                                                                                                               |
| 23       |                                                                                                                                               |
| 24       | * Corresponding authors:                                                                                                                      |
| 25       | Aqeel Al-Ani, e-mail address: a.a.t.al-ani@keele.ac.uk                                                                                        |
| 26       | V. Zholobenko, e-mail address: v.l.zholobenko@keele.ac.uk                                                                                     |
| 27       |                                                                                                                                               |
| 28       |                                                                                                                                               |
|          |                                                                                                                                               |
|          |                                                                                                                                               |

## 30 Experimental section

The catalytic studies, utilising 1,3,5-tri-isopropylbenzene (TIPB) dealkylation as a reaction test (Ref. S1), were carried out in a conventionally heated high-pressure reaction system, Monowave-50 supplied by Anton Paar, using specially designed 10-ml glass vials as batch reactors operating at elevated temperature and pressures (up to 250°C and 20 bar).



36 0.2 g of the zeolite catalyst was activated in an open reactor at 400°C for 5 h, cooled down to 37 ~100°C and then mixed with 2 mL of TIPB. The reactor was purged with nitrogen and sealed, the 38 temperature was raised to 240°C (the temperature ramp was ~ 40 °C/min) and kept for 1 h. Next, the 39 reaction mixture was cooled down to ~0°C and the liquid products were isolated and identified using 40 an Agilent 7890A GC with the 5975C mass detection system equipped with a capillary column 41 BPX90 SGE, 15m×0.25mm×0.25µm (1 % solution of the products in MTBE with 0.1 v% of nonane 42 as the internal standard).

43

| Table S1. GC-MS analysis conditions. |                         |  |  |  |  |  |
|--------------------------------------|-------------------------|--|--|--|--|--|
| Split ratio                          | 100                     |  |  |  |  |  |
| Carrier gas                          | Helium at 1 ml/min      |  |  |  |  |  |
| Column temperature                   | 50°C for 3 min          |  |  |  |  |  |
|                                      | 25°C/min to 300°C       |  |  |  |  |  |
|                                      | Hold at 300°C for 2 min |  |  |  |  |  |
| Injector and detector temperature    | 250°C                   |  |  |  |  |  |
| Injection volume                     | 0.2 μL                  |  |  |  |  |  |
|                                      |                         |  |  |  |  |  |

45 (S) Qin, Z.; Cychosz, K.A.; Melinte, G.; El Siblani, H.; Gilson, J-P.; Thommes, M.; Fernandez, C.;

46 Mintova, S.; Ersen, O.; Valtchev, V. Opening the Cages of Faujasite-Type Zeolite. J Am Chem Soc,

47 **2017**,139,17273-17276.

48





Figure S1. XRD patterns of faujasite-type zeolites treated with different amount of citric acid (a) 0
 meq, (b) 4.5 meq, (c) 6 meq, (d) 9 meq and (e) 12 meq.

52 (a)





(b)





56 Figure S2. (a) Bright field TEM images for the parent LTL zeolite; (b) TEM images of the parent



58 parent and modified ZSM-5 zeolites.



Figure S3. Pore size distribution of treated MOR at different times.





Figure S4. The relationship between the amount of citric acid added and the pore volume of
 modified faujasite-type zeolite.





66 Figure S5a. FTIR spectra of the O-H region of the parent (blue) and mesostructured (red) ZSM-5.



68 Figure S5b. FTIR spectra of the O-H region of the parent (blue) and mesostructured (red) MOR.

69



71 Figure S5c. FTIR spectra of the O-H region of the parent (blue) and mesostructured (red) FAU.



73 Figure S5d. FTIR spectra of the O-H region of the parent (blue) and mesostructured (red) BEA.



75

76 **Figure S5e.** FTIR spectra of the O-H region of the parent (blue) and mesostructured (red) LTL. All

77 sets of FTIR spectra are offset for clarity.



80 **Figure S6a.** <sup>27</sup>Al MAS NMR spectra (normalised to the same peak intensity) of the parent (blue) 81 and hierarchical (red) FAU.







Figure S6c. <sup>27</sup>Al MAS NMR spectra (normalised to the same peak intensity) of the parent (blue)
and hierarchical (red) MOR.



93 and hierarchical (red) LTL.



96 **Figure S6e.** <sup>27</sup>Al MAS NMR spectra (normalised to the same peak intensity) of the parent (blue) 97 and biographical (red) ZSM 5





Figure S7. <sup>29</sup> Si MAS NMR spectra of the parent and hierarchical zeolites.

101

100

## 102

## Table S2. Reaction test data: product selectivities (mol%) and conversion.

|           | IPB | MIPB | PIPB | TIPB | Conversion, % |
|-----------|-----|------|------|------|---------------|
| NH4-Y     | 3%  | 21%  | 11%  | 65%  | 35%           |
| MY-1      | 6%  | 28%  | 19%  | 46%  | 54%           |
| NH4-BEA   |     | 8%   | 4%   | 88%  | 12%           |
| MBEA-1    |     | 11%  | 6%   | 83%  | 17%           |
| NH4-ZSM-5 |     | 2%   | 0%   | 98%  | 2%            |
| MZSM-5-1  |     | 6%   | 0%   | 94%  | 6%            |
| NH4-MOR   |     | 2%   | 0%   | 98%  | 2%            |
| MMOR-1    |     | 7%   | 3%   | 91%  | 9%            |
| NH4-L     |     | 1%   | 0%   | 99%  | 1%            |
| ML-1      |     | 10%  | 3%   | 87%  | 13%           |

103 TIPB - 1,3,5-tri-isopropylbenzene

104 IPB - mono-isopropylbenzene

105 MIPB - 1,3- and for all the studied catalysts, and a small amount of

106 PIPB - 1,4-di-isopropylbenzenes