#### **Supplementary Information (SI)**

# Porous Reduced Graphene Oxide (rGO)/WO3 Nanocomposites for the

## Enhanced Detection of NH<sub>3</sub> at Room Temperature

G. Jeevitha<sup>a</sup>, R. Abhinayaa<sup>a</sup>, D. Mangalaraj<sup>a\*</sup>, N. Ponpandian<sup>a</sup>, P. Meena<sup>b</sup>, Veena Mounasamy<sup>c</sup> and Sridharan Madanagurusamy<sup>c</sup>

<sup>a</sup> Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, India.

b Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 004, India

c Functional Nanomaterials & Devices Laboratory, Centre for Nanotechnology & Advanced

Biomaterials and School of Electrical & Electronics Engineering, Shanmugha Arts, Science, Technology and Research Academy (SASTRA), Thanjavur - 613 401, India

\*Corresponding author. E-mail address: dmraj800@yahoo.com (D. Mangalaraj)

#### ST:1 Existing literature for WO<sub>3</sub> nanostructures towards NH<sub>3</sub> sensing

| Material               | Preparation   | Morphology    | Concentration  | Response              | Working      | Ref |
|------------------------|---------------|---------------|----------------|-----------------------|--------------|-----|
|                        | method        |               |                |                       | Temperature  |     |
| Pure WO <sub>3</sub> , | Sol-gel       |               | 400 - 4000 ppm | $WO_3 = 1.3$          | 250 - 450 °C | [1] |
| Au, Pt and             | process       |               |                | and                   |              |     |
| Pd-doped               |               |               |                | Pt-doped              |              |     |
| WO <sub>3</sub>        |               |               |                | WO <sub>3</sub> =12   |              |     |
| Pure WO <sub>3,</sub>  | Acidic        | Nanoparticles | 100 - 4000 ppm | $WO_3 = 9$            | 350 °C       | [2] |
| Pt-doped               | precipitation |               |                | and Pt-               |              |     |
| WO <sub>3</sub>        | route         |               |                | doped WO <sub>3</sub> |              |     |
|                        |               |               |                | = 125                 |              |     |
| Pure WO <sub>3</sub>   | Nanocasting   | Mesoporous    | 50 - 1500 ppm  | $WO_3 = 6.72$         | 125 - 200 °C | [3] |
| and Pt-                | method        |               |                | Pt-loaded             |              |     |

| loaded                          |                 |               |              | WO <sub>3</sub> =13.6        |             |      |
|---------------------------------|-----------------|---------------|--------------|------------------------------|-------------|------|
| WO <sub>3</sub>                 |                 |               |              |                              |             |      |
| Chromium-                       | Reflux          | Nanoparticles | 500 ppm      | WO <sub>3</sub> :Cr = $\sim$ | 700 °C      | [4]  |
| doped WO <sub>3</sub>           | condensation    |               |              | 82                           |             |      |
|                                 | process         |               |              |                              |             |      |
| WO <sub>3</sub>                 | Thermal         | Nanowire      | 1500 ppm     | $WO_3 = 9.7$                 | 250 °C      | [5]  |
|                                 | oxidation       |               |              |                              |             |      |
|                                 | process         |               |              |                              |             |      |
| Pure WO <sub>3,</sub>           | Self-assembly   | Macroporous   | 6.2-74 ppm   | $WO_3 = 3.3$                 | 225 °C      | [6]  |
| Cr and Pt-                      | and Sol-gel     |               |              | Pt-doped                     |             |      |
| doped                           | process         |               |              | WO <sub>3</sub> =110         |             |      |
| WO <sub>3</sub>                 |                 |               |              |                              |             |      |
| WO <sub>3</sub>                 | Acid            | Nanorods      | 50 - 200 ppm | 96%                          | 400 °C      | [7]  |
|                                 | precipitation   |               |              |                              |             |      |
|                                 | method          |               |              |                              |             |      |
| W <sub>18</sub> O <sub>49</sub> | Solvothermal    | Nanowires     | 0.1-10 ppm   |                              | Room        | [8]  |
|                                 | technique       |               |              |                              | temperature |      |
| Polypyrrole                     | Electrospinning | Nanofibers    | 1-20 ppm     | 27%                          | 100 °C      | [9]  |
| -WO <sub>3</sub>                |                 |               |              |                              |             |      |
| WO <sub>3</sub>                 | Electrospinning | Nanofibers    | 50-500 ppm   |                              | 350 °C      | [10] |
| WO <sub>3</sub> and             | Sol-gel process |               | 50 - 500 ppm |                              | 250 °C      | [11] |
| Cr–WO <sub>3</sub>              |                 |               |              |                              |             |      |
| WO <sub>3</sub>                 | Hydrothermal    | Nanorods      | 25-250 ppm   | 192                          | 50 °C       | [12] |
|                                 | synthesis       |               |              |                              |             |      |
|                                 |                 |               | 1            |                              |             |      |

## 2.1. Synthesis of WO3 nanostructures

The chemicals purchased from Sigma Aldrich and Hi-media are of analytical grade, and used without further purification. The facile solvothermal method was used to synthesize the different morphologies; WO<sub>3</sub> Aggregated nanoparticle (WO<sub>3</sub>-1), WO<sub>3</sub> nanospheres (WO<sub>3</sub>-2) and WO<sub>3</sub> nanorods (WO<sub>3</sub>-3) nanostructures were obtained on changing the surfactant. A typical synthesis process was as follows: Initially 0.1 M of

WCl<sub>6</sub> was dissolved in 30 mL of ethanol and 0.05 M of sodium dodecyl sulfate (SDS) was dissolved in 30 mL ethanol. Both the solutions were stirred separately for 1 hour. The SDS solution was then added dropwise into the WCl<sub>6</sub> solution, which was dark blue in colour. The mixture was stirred for another hour at room temperature, and then shifted into a teflon-lined stainless-steel autoclave and kept at 180°C for 12 h. The resultant product was washed with double distilled water and ethanol to remove the unreacted ions by centrifugation before drying at 65 °C for 24 h. The final product obtained, WO<sub>3</sub>.H<sub>2</sub>O was calcined at 450 °C for 3 h to remove water molecules and to achieve pristine WO<sub>3</sub>, named as WO<sub>3</sub>-1. For the preparation of WO<sub>3</sub>-2 and WO<sub>3</sub>-3, the surfactant was changed to hexamethylenetetramine (HMTA) and cetyltrimethyl ammonium bromide (CTAB) respectively. The detailed parameters for the synthesis of WO<sub>3</sub> is given in Fig. S1.

| Samples            | Tungsten         | Solvent | pН  | Surfactant | Temperature  | Annealing   | Morphology    |
|--------------------|------------------|---------|-----|------------|--------------|-------------|---------------|
|                    | source           | used    |     | used       | and time     | temperature |               |
| WO <sub>3</sub> -1 | WCl <sub>6</sub> | Ethanol | 0.5 | SDS        | 180 °C, 12 h | 450 °C, 3 h | Aggregated    |
|                    |                  |         |     |            |              |             | nanoparticles |
| WO <sub>3</sub> -2 | WCl <sub>6</sub> | Ethanol | 0.5 | HMTA       | 180 °C, 12 h | 450 °C, 3 h | Nanospheres   |
| WO <sub>3</sub> -3 | WCl <sub>6</sub> | Ethanol | 0.5 | СТАВ       | 180 °C, 12 h | 450 °C, 3 h | Nanorods      |

ST2: Synthesis parameters for the preparation of WO<sub>3</sub> nanostructures.

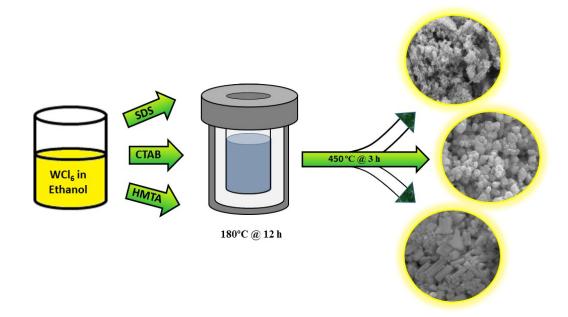



Fig. S1 Schematic diagram for the preparation of WO<sub>3</sub> nanostructures with three different surfactants.



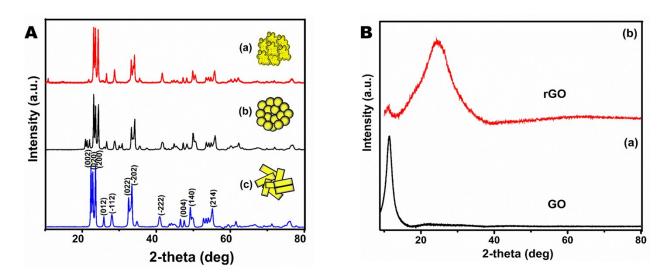



Fig. S2 Powder XRD spectrum of different morphologies of WO<sub>3</sub> nanostructures obtained by solvothermal method using different surfactants (a)  $WO_3$ -1 (b)  $WO_3$ -2 and (c)  $WO_3$ -3

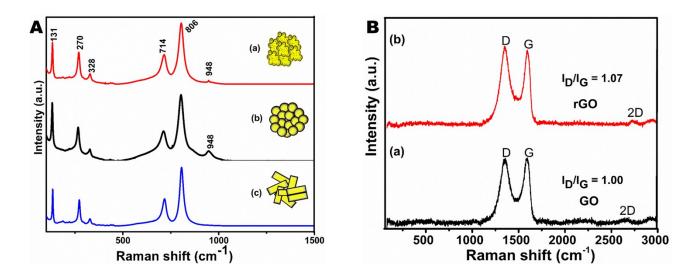



Fig. S3 Raman Spectrum of WO<sub>3</sub> nanostructures for different morphologies (a) WO<sub>3</sub>-1 (b) WO<sub>3</sub>-2 (c) WO<sub>3</sub>-3

For all the WO<sub>3</sub> crystalline phases, three main frequency regions are observed; the first in the low frequency region ( $<200 \text{ cm}^{-1}$ ), where several peaks associated with the lattice modes appear; the second at intermediate frequencies (200–400 cm<sup>-1</sup>) showing O–W–O bending mode, and the third at higher frequencies (600–900 cm<sup>-1</sup>) with the peaks associated with W–O stretching modes. Sharp peaks appear at 132, 272, 328,714 and 806 cm<sup>-1</sup> and these peaks confirm the WO<sub>3</sub> formation with a monoclinic structure [13]. From the Raman spectra, it is clear that all the samples have the same monoclinic phase of WO<sub>3</sub> irrespective of the different morphologies.

#### **FESEM:**

Three different morphologies of WO<sub>3</sub> have been prepared using the three surfactants SDS, HMTA and CTAB, where SDS is an anionic surfactant, CTAB is cationic and HMTA cationic. When the SDS is introduced into the prepared precursor solution, SDS molecules get adsorbed on the surface of WCl<sub>6</sub> as tiny particles. These tiny particles mold into different shapes of WO<sub>3</sub> nuclei, which grow into the nanoparticles when subjected to hydrothermal treatment. Fig. S4 (a and b) shows the observed FESEM images for the SDS assisted sample, which has a cloud like morphology. This sample exhibits a particle size distribution of 125-130 nm. Fig. S4 (c and d) shows the FESEM images for the HMTA assisted sample. Well-defined nanospheres

are observed, with diameters in the range of 110-120 nm. From Fig. S4 (e and f), it is evident that the presence of CTAB is favorable for the formation of WO<sub>3</sub> nanorods. In general, CTAB is a cationic surfactant, which could pave the way for self-assembly and the formation WO<sub>3</sub> 1D nanorods and the average particle size is found to be between 110 - 120 nm [14-16].

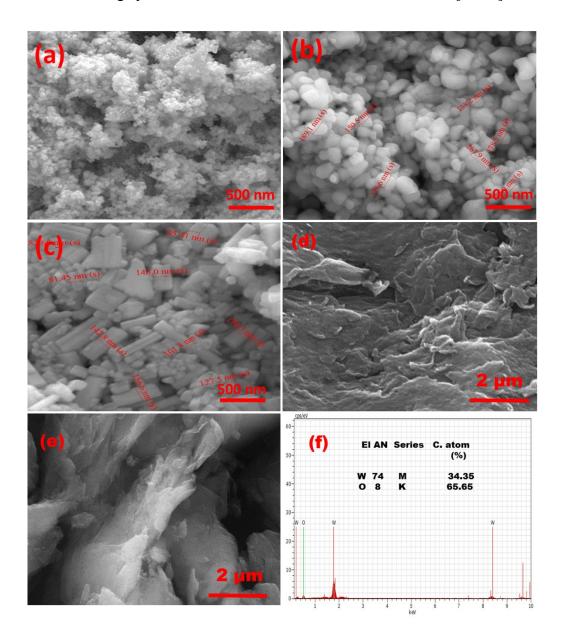



Fig. S4 FESEM image of WO<sub>3</sub> synthesized using different surfactants and their morphologies (a) WO<sub>3</sub>-1 aggregated nanoparticles (SDS as surfactant) (b) WO<sub>3</sub>-2 nanospheres (HMTA as surfactant) (c) WO<sub>3</sub>-3 nanorods (CTAB as surfactant) (d) graphene oxide sheet (e)Reduced Graphene Oxide and (f) EDAX spectrum of rGO/WO<sub>3</sub>

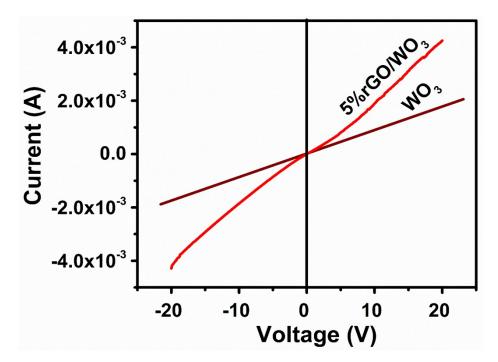



Fig. S5: I-V characteristics of WO3 nanospheres and 5% rGO/WO3 nanocomposite

## Gas sensing

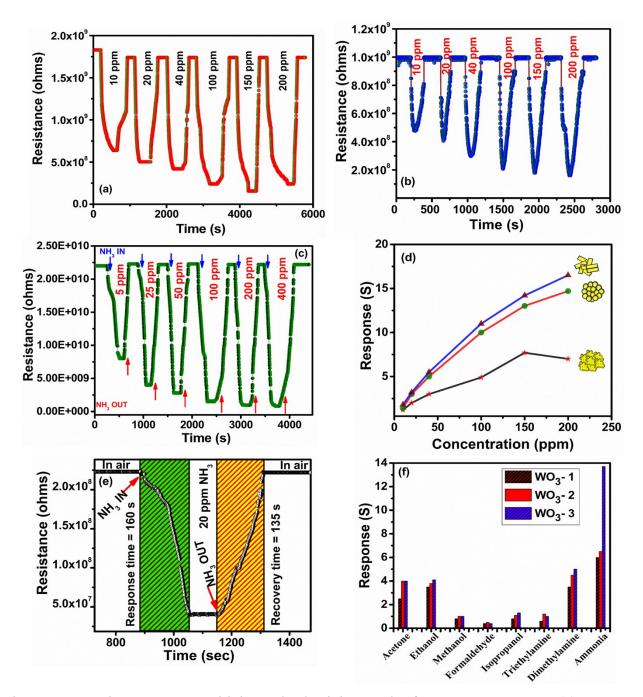



Fig. S6: Dynamic response, sensitivity and selectivity graph of WO<sub>3</sub> nanostructures (a) WO<sub>3</sub>-1 aggregated nanoparticles (SDS as surfactant) (b) WO<sub>3</sub>-2 nanospheres (HMTA as surfactant) (c) WO<sub>3</sub>-3 nanorods (d) Sensor response towards different morphologies (e) Response and recovery time of WO<sub>3</sub>-3 nanorods towards 20 ppm NH<sub>3</sub> and (f) Selectivity of different morphologies WO<sub>3</sub> nanostructures.

# ST3: Comparison on the responses of different nanomaterials with graphene and PANI towards NH<sub>3</sub> sensing

| S.No | Materials                         | Concentration   | Temperature | Sensor   | Res/Rec  | Ref  |
|------|-----------------------------------|-----------------|-------------|----------|----------|------|
|      |                                   |                 |             | response | time     |      |
| 1    | Graphene-                         | 10-100 ppm      | Room        | 344.2    | 20/27    | [17] |
|      | Polyaniline                       |                 | temperature |          |          |      |
|      | hybrid                            |                 | (22.0 °C)   |          |          |      |
| 2    | rGO-SnO <sub>2</sub>              | 25 -2800 ppm    | Room        | 1.3-22.0 | 210/150  | [18] |
|      | films                             |                 | temperature |          |          |      |
| 3    | SnO <sub>2</sub> –WO <sub>3</sub> | 50-1000 ppm     | 300 °C      | 7.1      | 1.9–20.3 | [19] |
|      | bilayer thin film                 | NH <sub>3</sub> |             |          |          |      |
| 4    | PANI/WO <sub>3</sub>              | 10 ppm          | Room        | 20.1     | 13/49 s  | [20] |
|      |                                   |                 | temperature |          |          |      |
| 5    | Tinoxide-                         | 100–500 ppm     | Room        | 9-15%    | 15/80 s  | [21] |
|      | polyaniline                       |                 | temperature |          | (300     |      |
|      | nanocomposite                     |                 |             |          | ppm)     |      |
| 6    | rGO/WS <sub>2</sub>               | 10 – 50 ppm     | Room        | 121-     | ~60/300  | [22] |
|      | heterojunctions                   |                 | temperature | 256%     | S        |      |
|      |                                   |                 |             |          | (10 ppm) |      |
| 7    | Graphene-Based                    | ppt - ppm       | Room        |          |          | [23] |
|      | Wearable Gas                      |                 | temperature |          |          |      |
|      | Sensors                           |                 | and         |          |          |      |
|      |                                   |                 | temperature |          |          |      |
|      |                                   |                 | dependent   |          |          |      |
| 8    | rGO                               | 300 ppm         | Room        | 3.1%     | ~45/85 s | [24] |
|      |                                   |                 | Temperature |          |          |      |
| 9    | WO <sub>3</sub>                   |                 |             | 1.2-7,   | ~160/135 | This |
|      | nanostructures                    |                 |             | 1.4-14.7 | s for    | work |
|      | (aggregated                       |                 |             | & 1.8-   | nanorod  |      |
|      | nanoparticles,                    | 10-200 ppm      | Room        | 16.0     |          |      |

|     | nanospheres and      |            | temperatur |           |         |      |
|-----|----------------------|------------|------------|-----------|---------|------|
|     | nanorods)            |            | e          |           |         |      |
| 10. | WO <sub>3</sub> /rGO | 10-100 ppm | Room       | 4.50-15.8 | 18-24 s | This |
|     | nanocomposite        |            | temperatur |           | (40     | work |
|     |                      |            | e          |           | ppm)    |      |

#### References

- V. Srivastava and K. Jain, highly sensitive NH<sub>3</sub> sensor using Pt catalyzed silica coating over WO<sub>3</sub> thick films, *Sensors and Actuators B*, 133 (2008) 46–52.
- [2] T.D. Senguttuvana, V. Srivastava, J. S. Tawal, M. Mishraa, S. Srivastava, K. Jain, Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method, *Sensors and Actuators B*, 150 (2010) 384–388.
- [3] Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, NH<sub>3</sub> gas sensing performance enhanced by Pt-loaded on mesoporous WO<sub>3</sub>, *Sensors and Actuators B*, 238 (2017) 473–481.
- [4] I. Jimenez, M. A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Corneta and J. R. Morantea, J. Mater. Chem., 14 (2004) 2412 2420.
- [5] N.V. Hieu, V. V. Quang, N. D. Hoa, D, Kim, Preparing large-scale WO<sub>3</sub> nanowire-like structure for high sensitivity NH<sub>3</sub> gas sensor through a simple route, *Current Applied Physics.*, 11 (2011) 657-661.
- [6] M. D'Arienzo, L. Armelao, C. M. Mari, S. Polizzi, R. Ruffo, R. Scotti, and F. Morazzoni., Macroporous WO<sub>3</sub> Thin Films Active in NH<sub>3</sub> Sensing: Role of the Hosted Cr Isolated Centers and Pt Nanoclusters, *J. Am. Chem. Soc.*, 133 (2011) 5296 -5304.
- [7] L. Wang, J. Pfeifer, C. Balázsi, and P. I. Gouma, Synthesis and Sensing Properties to NH<sub>3</sub> of Hexagonal WO<sub>3</sub> Metastable Nanopowders, *Materials and Manufacturing Processes.*, 22 (2007) 773-776.
- [8] Y.M. Zhao, Y.Q. Zhu, Room temperature ammonia sensing properties of W<sub>18</sub>O<sub>49</sub> nanowires, *Sensors and Actuators B.*, 137 (2009) 27-31.

- [9] T. A. Ho, T.S. Jun, Y. S. Kim, Material and NH<sub>3</sub>-sensing properties of polypyrrolecoated tungsten oxide nanofibers, *Sensors and Actuators B*, 185 (2013) 523–529.
- [10] G. Wang, Y. Ji, X. Huang. X. Yang, P. I. Gouma, and M. Dudley, Fabrication and Characterization of Polycrystalline WO<sub>3</sub> Nanofibers and Their Application for Ammonia Sensing, *J. Phys. Chem. B*, 110 (2006) 23777-23782.
- [11] M. Epifani, N. G. Castelloe, J. D. Prades, A. Cirera, T. Andreu, J. Arbiol, P. Sicilianoa, J. R. Morante, Suppression of the NO<sub>2</sub> interference by chromium addition in WO<sub>3</sub>-based ammonia sensors. Investigation of the structural properties and of the related sensing pathways, *Sensors and Actuators B*, 187 (2013) 308–312.
- [12] D. D. Nguyen, D. V. Dang and D. C. Nguyen, Hydrothermal synthesis and NH<sub>3</sub> gas sensing property of WO<sub>3</sub> nanorods at low temperature, *Adv. Nat. Sci.: Nanosci. Nanotechnol.*, 6 (2015) 035006.13
- [13]S. Poongodi, P. S. Kumar, Y. Masuda, D. Mangalaraj, N. Ponpandian, C. Viswanathan and S. Ramakrishna, Synthesis of hierarchical WO<sub>3</sub> nanostructured thin films with enhanced electrochromic performance for switchable smart windows, *RSC Adv.*, 5 (2015) 96416-96427.
- [14] N. Asim, S. Radiman & M. A. B. Yarmo, Synthesis of WO<sub>3</sub> in nanoscale with the usage of sucrose ester microemulsion and CTAB micelle solution, *Materials Letters*, 6 (2007) 2652-2657.
- [15] Y. X. Wang, J. Sun, X. Y. Fan and X. Yu, A CTAB-assisted hydrothermal and solvothermal synthesis of ZnO nanopowders, *Ceramics International*, 37 (2011) 3431–3436.
- [16] G. Bailly, J. Rossignol, B. de Fonseca, P. Pribetich, and D. Stuerga, Microwave Gas Sensing with Hematite: Shape Effect on Ammonia Detection Using Pseudocubic, Rhombohedral, and Spindlelike Particles, ACS Sens., 1 (2016) 656–662.
- [17] S. Bai, Y. Zhao, J. Sun, Y. Tian, R. Luo, D. Li and A. Chen, *Chem. Commun.*, 2015, 51, 7524 DOI: 10.1039/C5CC01241D
- [18] R. Ghosh, A. K. Nayak, S. Santra, D. Pradhan and P. K. Guha, Enhanced Ammonia Sensing at Room Temperature with Reduced Graphene Oxide/ Tin Oxide Hybrid Film, *RSC Adv.*, 5(62) (2015), 50165-50173, DOI: 10.1039/C5RA06696D.

- [19] N. V. Toan, C. M. Hung, N. V. Duy, N. D. Hoa, D. T.T. Le, N. V. Hieu, Bilayer SnO<sub>2</sub>–WO<sub>3</sub> nanofilms for enhanced NH<sub>3</sub> gas sensing performance, *Materials Science* & Engineering B, 224 (2017) 163–170
- [20] S. Li, P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu\*, P. Sun, X. Liang, F. Liu, X. Yan, Y. Gao, G. Lu, The room temperature gas sensor based on Polyaniline@flower-likeWO<sub>3</sub> nanocomposites and flexible PET substrate for NH<sub>3</sub> detection, *Sensors and Actuators B*, 259 (2018) 505–513
- [21] N.G. Deshpandea, Y.G. Gudage, Ramphal Sharma, J.C. Vyas, J.B. Kim, Y.P. Lee, Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications, *Sensors and Actuators B*, 138 (2009) 76–84
- [22] X. Wang, D. Gu, X Li, S. Lin, S. Zhao, M. N. Rumyantseva, A. M. Gaskov, Reduced graphene oxide hybridized with WS<sub>2</sub> nanoflakes based heterojunctions for selective ammonia sensors at room temperature, *Sensors and Actuators B: Chemical*, 282 (2019) 290-299.
- [23] Eric Singh, M. Meyyappan, and Hari Singh Nalwa, Flexible Graphene-Based Wearable Gas and Chemical Sensors, ACS Appl. Mater. Interfaces, 9(2017) 34544–34586.

[24] Cherukutty Ramakrishnan Minitha, Velunair Sukumaran Anithaa, Vijayakumar Subramaniam and Ramasamy Thangavelu Rajendra Kumar, Impact of Oxygen Functional Groups on Reduced Graphene Oxide Based Sensors for Ammonia and Toluene Detection at Room Temperature, ACS Omega, 3 (2018) 4105–4112