Supporting Information

Epitaxial Highly Ordered Sb: SnO2 Grown by the Vapor Liquid Solid Mechanism on m-, r- and a-Al2O3

M. Zervos ^{□1}, N. Lathiotakis ^κ, N. Kelaidis ^I, A. Othonos [§], E. Tanasă ^I, E. Vasile ^I

Nanostructured Materials and Devices Laboratory, School Of Engineering, University of Cyprus,
PO Box 20537, Nicosia, 1678, Cyprus

^{*} Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece.

¹ Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom

[§] Laboratory *Of* Ultrafast Science, Department *Of* Physics, University *of* Cyprus, P.O.Box 20537, Nicosia, 1678, Cyprus.

¹ Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania

¹ E-mail:zervos@ucy.ac.cy

S1 Properties of Sb: SnO₂ NWs obtained on c-Al₂O₃

The Sb: SnO_2 NWs that were grown on c-Al₂O₃ at 800°C using $Sn/Sb = 0.15 \pm 0.05$ under a flow of Ar and O_2 at 1 ± 0.5 mbar were not ordered as shown in Figure S1 (a). This is in contrast to the findings of Mazeina et al.¹ who obtained vertical SnO₂ NWs via the VLS mechanism on c-Al₂O₃ at 900°C albeit with limited ordering and uniformity. Nevertheless we observed the formation of ordered Sb: SnO₂ NWs on the sides of the c-Al₂O₃ as shown in Figure S1 (b). In order to find out if this was related to differences in the thickness of the Au on the top and sides of the c-Al₂O₃ we deposited 1 nm of Au directly on the side of the c-Al₂O₃ as shown in Figure S1(c) and repeated the growth keeping all else equal. However we did not obtain oriented Sb: SnO₂ NWs on top of c-Al₂O₃, only on its side. It should also be mentioned that we did not observe any ordering of the Sb: SnO₂ NWs on c-Al₂O₃ by changing its inclination or angle with respect to the gas flow. This is consistent with the findings of Kim et al.² who investigated the lateral epitaxial growth of faceted and aligned SnO₂ NWs on r-Al₂O₃ and found little or no dependence of the alignment on the gas flow direction. The XRD spectrum of the Sb: SnO₂ NWs on c-Al₂O₃ is shown in Figure S1 (e) from which we observe the occurrence of many peaks belonging to the tetragonal rutile crystal structure of SnO₂. The Sb: SnO₂ NWs grow in many different crystallographic directions as they do not obey a strict epitaxial relation with the underlying c-Al₂O₃ but nevertheless are highly crystalline. In contrast the XRD spectrum of the ordered Sb: SnO₂ NWs obtained on the sides is shown in Figure S1 (d) from which we observe just two peaks corresponding to the tetragonal rutile crystal structure of SnO₂ and a-Al₂O₃. This is due to the fact that the Sb: SnO₂ NWs grow in

an epitaxial fashion on the side facet along a specific crystallographic direction. The ordered Sb: SnO_2 NWs on the side of c-Al₂O₃ are also highly crystalline but it is not possible to use them for the realization of devices such as nanowires solar cells so we did not investigate further their structural properties. This prompted us to grow Sb: SnO_2 NWs on top of m-, r- and a-Al₂O₃ in which case the ordered Sb: SnO_2 NWs can be processed further into devices.

Figure S1. (a) SEM images of the Sb: SnO_2 NWs obtained at 800°C on top of c-Al₂O₃ and (b) on the side of c-Al₂O₃, with Sb/Sn = 0.1 (c) schematic of the deposition of Au on top of c-Al₂O₃ and on its side. The corresponding XRD of (a) and (b) are shown in (d) and (e) respectively. The Sb: SnO_2 NWs grow in an ordered fashion on the vertical a-Al₂O₃ side facet which is depicted schematically in relation to c-Al₂O₃ in (f).

References

(1) Mazeina, L.; Picard, Y.N.; Caldwell, J.D.; Glaser, E.R.; Prokes, S.M. Growth and Photoluminescence Properties of Vertically Aligned SnO₂ Nanowires. *J. Cryst. Growth* **2009**, 311 3158–3162

(2) Kim, W.S.; Kim, D.; Hong, S.H. Lateral Epitaxial Growth of Faceted SnO₂ Nanowires with Self Alignment. *Cryst. Eng. Comm.* **2014**, 16, 9340-9344