Electronic supplementary material

Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activities through bifunctional Ag/ZnO nanohybrid material made-up via sodium alginate method

Hicham Abou Oualid^{a,b}, Othmane Amadine^a, Younes Essamlali^a, Issam Meftah Kadmiri^c, Hicham El Arroussi^c, Mohamed Zahouily^{a,b,*}

^{a.} VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli, Madinat El Irfane 10100-Rabat, Morocco.

^{b.} Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FST, Université Hassan II-Casablanca BP, 146, 20650, Morocco.

Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rabat, Morocco

*Correspondence:m.zahouily@mascir.com; Tel. +212661416359

Fig. A1 : TGA of Alg@Zn@Ag1 (a), Alg@Zn@Ag2 (b) and Alg@Zn@Ag3 (c) under air.

Fig. A2 : Photo of the Alg@Zn@Ag beads(a) and (b) Ag/ZnO powder.

Fig. A3: FTIR analysis of pure zinc oxide fabricated by the same procedure.

Fig. A4: N₂ adsorption-desorption (isotherms) and BJH pore size distribution of $Ag_{0.84}/ZnO$ (a, b), $Ag_{1.68}/ZnO$ (c, d) and $Ag_{2.98}/ZnO$ (e, f), respectively.

Fig. A5: UV–Vis spectra evolution of solutions of 4-NP in the presence of NaBH₄ in different concentration of 4-NP.

Fig. A6: UV–Vis spectra evolution of solutions of 4-NP in the presence of NaBH₄ in different mass concentrations of Ag/ZnO catalyst.

Fig. A7: UV–Vis spectra evolution of solutions of 4-NP in the presence of NaBH₄ in different in different R ratio.