## **Supporting Information**

## Epitaxial patterned Bi<sub>2</sub>FeCrO<sub>6</sub> nanoisland arrays with room temperature multiferroic properties

Wei Huang,<sup>a</sup> Shun Li,<sup>bc</sup> Soraya Bouzidi,<sup>d</sup> Lei Lei,<sup>e</sup> Zuotai Zhang,<sup>c</sup> Ping Xu,<sup>e</sup> Sylvain G. Cloutier,<sup>d</sup> Federico Rosei<sup>\*a</sup> and Riad Nechache<sup>\*d</sup>

<sup>a</sup> INRS-Centre Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada

<sup>b</sup> SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, The People's Republic of China

<sup>c</sup> School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, The People's Republic of China

<sup>d</sup> École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, Québec H3C 1K3, Canada

<sup>e</sup> College of Electronic Science and Technology, Shenzhen University, Nanhai Ave 3688,
Shenzhen 518060, The People's Republic of China

\*Corresponding Authors:

E-mail: rosei@emt.inrs.ca (Federico Rosei)

E-mail: Riad.Nechache2@etsmtl.ca (Riad Nechache)



**Figure. S1.** Left: Crystal structure of the double perovskite  $Bi_2FeCrO_6$  from different perspectives. O and Bi atoms are denoted by the smallest ball with black and the biggest ball with blue, respectively. Fe and Cr octahedra are colored green and red, respectively. Right: double-perovskite structure involved in perovskite Bi-Fe-O and perovskite Bi-Cr-O unit cells, along Fr-Cr ions [111] direction. Adapted from ref. 1.



**Figure S2.** X-ray photoelectron spectroscopy (XPS) of (a) Fe 2p and (b) Cr 2p lines for BFCO patterned nanostructures on Nb-SrTiO<sub>3</sub> (100) substrate.

The Fe 2p XPS spectra reveal the  $2p_{3/2}$  and  $2p_{1/2}$  doublets arising from spin-orbit splitting (Fig. S2(a)). The binding energies for Fe2p<sub>3/2</sub> and Fe2p<sub>1/2</sub> peaks are about 710.1 and 723.2 eV, respectively. From the Fig. S2(a) we deduce that the oxidation state of Fe in our BFCO/NSTO nanostructures is Fe<sup>3+</sup>. The Cr 2p XPS spectra reveal the  $2p_{3/2}$  and  $2p_{1/2}$  doublets arising from spin-orbit splitting (Fig. S2(b)). The binding energies for Cr2p<sub>3/2</sub> and Cr2p<sub>1/2</sub> peaks are about 576.4 and 586.2 eV, respectively, implying that the oxidation state of the Cr ion on BFCO is Cr<sup>3+</sup>.<sup>2</sup>



**Figure S3.** The first and second harmonic PFM responses of BFCO nanoisland under (a) 1, (b) 2, (c) 3, and (d) 4 V AC excitation.

## **Reference:**

- 1 R. Nechache, F. Rosei, J. Solid Stat. Chem., 2012, 189, 12.
- 2 R. Nechache, C. V. Cojocaru, C. Harnagea, C. Nauenheim, M. Nicklaus, A. Ruediger, F. Rosei

and A. Pignolet, Adv. Mater., 2011, 23, 1724.