Supporting Information

Single sea urchin–MoO₃ nanostructure for surface enhanced Raman spectroscopy of dyes

Ramya Prabhu B.,[†] K. Bramhaiah[†], Kaushalendra K Singh and Neena S John* Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore-560013, India Email: jsneena@cens.res.in

Figure S1. (a) Schematic of synthesis of MoO_3 sea urchins and h-MoO₃ nanorods employing chemical bath deposition and microwave methods, respectively. (b) FESEM images of MoO_3 sea urchin growth at various reaction stages from 30 to 180 minutes.

Figure S2. Histograms of MoO_3 sea urchins (a) Size distribution (from FESEM) and (b) length of the spikes (TEM images).

Figure S3. (a) FESEM image of MoO_3 sea urchin (b) combined EDS map of Mo L level and O K level (c) Corresponding EDS mapping of Mo L and (d) O K level.

Figure S4. FESEM images of vertically aligned h-MoO₃ nanorods grown on Si substrate employing microwave method (a) low magnification image (b) high magnification image

Figure S4 displays the low and high magnified FESEM image of h-MoO₃ nanorods. From figure S4b, one can see that the NRs are 1D hexagonal rods. The h-MoO₃ nanorods are well oriented, uniform and grown vertically to the substrate with the diameter of ~400 nm and length of ~5.5 μ m.

Figure S5. (a) FTIR spectra (b) Raman spectra of vertically aligned MoO₃ nanorods.

FTIR spectra of h-MoO₃ display three strong vibrational peaks in the range of 400-1000 cm⁻¹. The three strong vibrational peaks detected at 569 cm⁻¹, 923 cm⁻¹ and 992 cm⁻¹, associated with the stretching modes of Mo-O bonds, stretching and bending modes of Mo=O bonds. The broad peaks appeared at 3432 cm⁻¹ and 1630 cm⁻¹ due to stretching and bending vibrations of hydroxyl groups (-OH) present. The weak broad peaks at 3249 cm⁻¹ and 1440 cm⁻¹ correspond to the stretching and bending vibrations of N-H of NH₄⁺ groups. In the Raman spectra for h-MoO₃, the peaks at 877 and 977 cm⁻¹ correspond to the vibrational modes of O=Mo whereas the peaks at 484 and 687 cm⁻¹ are attributed to the O-Mo vibrations and the peak at 397 cm⁻¹ has been assigned to O=Mo=O vibrations.

Figure S6. (a) UV-visible-NIR absorption spectra of as-synthesized MoO₃ nanostructures such as MoO₃ sea urchins and vertically aligned h-MoO₃ nanorods (b) Zoomed view of absorption spectra in (a).

Figure S7. XPS Survey spectra of MoO_3 nanostructures (a) MoO_3 sea urchins (b) h-MoO₃ nanorods.

Figure S8. XPS spectra of h-MoO₃ nanorods (a) Mo 3d and (b) O 1s.

Figure S9. SERS spectra of R6G molecules with various concentrations on h-MoO₃ NRs.

|--|

Peak positions	Enhancement factor (EF)				
	<i>MoO</i> ₃ sea-urchins	MoO3 vertically aligned nanorods			
612 cm ⁻¹	$\sim 1 \times 10^{5}$	$\sim 7.8 \times 10^{3}$			
1358 cm ⁻¹	~ 7× 10 ⁴	$\sim 5.4 \times 10^{3}$			

Material	Analyte	EF	Excitation	Reference
			Laser	
MoO ₂ sea urchins	R6G	$\sim 1 \times 10^{5}$	532	This work
h-MoO ₃ NRs	(Rhodamine 6G)	$\sim 7.8 \times 10^{3}$	002	
MoO ₃ NRs coated	MB	1.6×10^{4}	532	Wang et al. RSC Adv.,
polymethacrylic	(Methylene blue)			2017, 7, 36201.
acid shell		1.42 1.05	705	
Plasmonic MoO_{3}	MB	1.42×10^{3}	785	I an et al. Chem.
x@10003				2893.
1D MoO ₃	4-MBA	10 ³	632.8	Dong et al. ChemAsian
nanoribbons	(4-			J., 2010, 5, 1824.
	Mercaptobenzoic			
a-MoO ₂ Micro	aciu)	9 3 × 10 ⁵	532	Wu et al Analyst 2017
particles	R6G	2.0 10	552	142, 326.
α -MoO _{3-x}		1.8×10^{7}		,
nanobelts				
Cu ₂ O	R6G	8×10^{5}	647	Lin et al. Adv. Mater.,
superstructure		2.4.104	522	2017, 29, 1604797.
Cu_2O nanostructure	4-AIP (4- Aminothionhenol)	3.4×10^{4}	532	Qiu et al. J. Phys. Chem. Lett 2012 3 651
CuO nanocrystals	4-MPY	102	532	Wang et al Anal Sci
	(4-			2007, 23, 787.
	Mercaptopyridine)			
Urchin-like W ₁₈ O ₄₉	R6G	3.4×10^{5}	522	Cong et al. Nat.
				Commun., 2015, 17,
ZnO nanocages	4-MBA	6.62×10^5	633	/δ00. Wang et al Δngew
Zito nanocages	-101D/ (0.02 × 10	055	Chem. Int. Ed., 2017, 56.
				9851.
ZnO nanocrystals	4-MPY	103	514.5	Wang et al. J. Raman
				Spectrosc., 2009, 40,
TiO miaraarraya	MD	2 104	520	10/2. Oi at al. I. Am. Cham
110 ₂ microanays	IVID	2×10^{4}	552	Soc., 2014, 136, 9886.
TiO ₂ NPs	Dopamine	10 ³	442	Musumeci et al. J. Am.
				Chem. Soc., 2009, 131,
	D 11		400.0	6040.
Fe_2O_3	Pyridine	7.8×10^{3}	488 &	Lett 1088 153 215
ZnS nanocrystals	4-MPV	103	514.5	Wang et al I Raman
	1 1711 1	10		Spectrosc., 2007, 38, 34.

Table S2. Comparing the EF values for various semiconductors reported in the literature.

Figure S10. SERS spectra of R6G on MoO_3 sea urchin nanostructure (a) From the core or middle region (b) At the tips of the spiky features of the MoO_3 sea urchin.

Figure S11. Schematic representation of charge transfer between the MoO₃ nanostructures and R6G molecules during the excitation with 532 nm laser light.

Figure S12. SERS spectra of R6G on MoO_3 sea urchin nanostructure surface at 10 random positions.

Figure S13. Reusable vertically aligned $h-MoO_3$ nanorods as SERS substrates; SERS of 100 μ M R6G before and after UV treatment.