Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2019

SUPPLEMENTARY INFORMATION FOR: Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films

Sandra Kauffmann-Weiss¹, Kazumasa Iida^{2,3}, Chiara Tarantini⁴, Torben Boll^{5,6}, Reinhard Schneider⁷, Taito Ohmura³, Takuya Matsumoto², Takafumi Hatano^{2,3}, Marco Langer¹, Sven Meyer¹, Jan Jaroszynski⁴, Dagmar Gerthsen⁷, Hiroshi Ikuta^{2,3}, Bernhard Holzapfel¹, Jens Hänisch¹

- 1) Institute for Technical Physics (ITEP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- 2) Department of Materials Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- 3) Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- 4) Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
- 5) Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- 6) Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), 76344, Karlsruhe, Germany
- 7) Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany

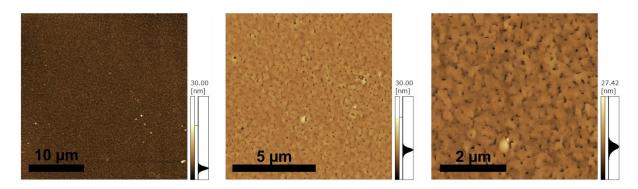


Figure S1: Atom force microscopy images of the MgO/NdFeAs(O,F)/NdOF sample at different magnifications.

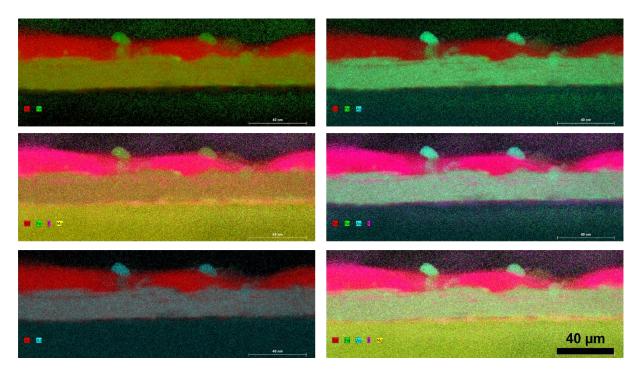


Figure S2: Further element distribution maps of Fe (green), Nd (red), Mg (yellow), As (blue) and F (purple) of the NdFeAs(O,F)/NdOF layers on MgO measured by energy-dispersive X-Ray spectroscopy.

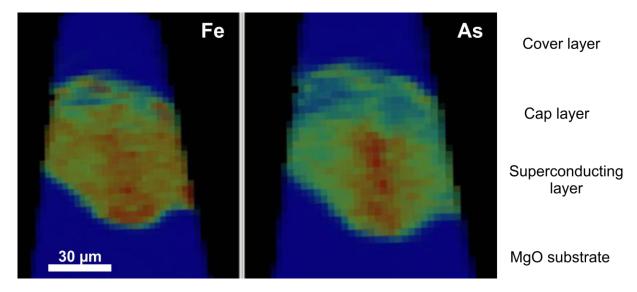


Figure S3: Further color-coded atomic element distribution of Fe and As of a NdFeAs(O,F)/NdOF layers on MgO measured by APT as vertical cross section. Blue means 0 at. % and red the corresponding maximum concentration. Small, elongated As particle is visible.

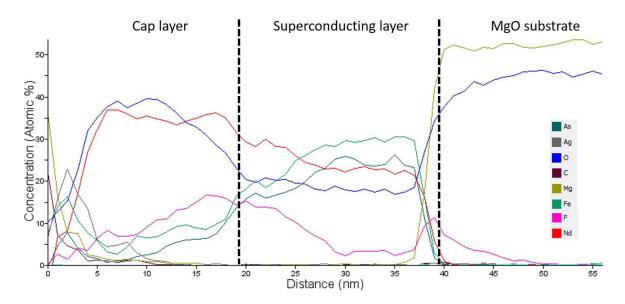


Figure S4: Concentration profile NdFeAs(O,F)/NdOF layers on MgO measured by APT along z-direction of the layer architecture. At the interface to the MgO substrate a Mg-F rich layer is observed. The F-content shows huge changes along the z-direction.