Electronic Supplementary Information (ESI)

Stable polymeric chain configuration producing high performance

PEBAX-1657 membrane for CO₂ separation

Pankaj Sharma,* Young-Jin Kim, Min-Zy Kim, Syed Fakhar Alam, and Churl Hee Cho*

Graduate School of Energy Science and Technology, Chungnam National University, 99

Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

^{*}Corresponding author. Tel.: +82 42 821 8606; fax: +82 42 821 8839.

E-mail address: sharmapankaj47@yahoo.com (P. Sharma), choch@cnu.ac.kr (C.H. Cho)

This supplementary data file includes:

- 1. Figures S1-S9
- 2. Tables S1-S3
- 3. References

Fig. S1. Schematic description of pristine PEBAX and double layer PEBAX/nano molecular sieves MMMs preparation.

Fig. S2. Different magnification scanning electron micrographs of nano size zeolite A molecular sieve crystals.

Fig. S3. Different magnification scanning electron micrographs of nano size zeolite Y molecular sieve crystals.

Fig. S4. PSD curves of as-synthesized zeolite molecular sieves A and Y.

Fig. S5. X-ray diffraction patterns of as-synthesized zeolite molecular sieves A and Y along with their respective standard diffraction patterns.

Fig. S6. Water vapor adsorption-desorption isotherms of nano size zeolites A and Y molecular sieve crystals at 298 K.

Fig. S7. Photographic camera images (top row), and surface SEM micrographs (bottom row) of various thickness PEBAX-1657 membranes.

Fig. S8. Collective representation of X-ray diffraction patterns of pristine PEBAX-1657 membranes reported in literature to make a healthy comparison with diffraction patterns of the as-synthesized high crystallinity thin PEBAX membranes (**Fig. 4, main text**) (Adopted from ref.¹, and reproduced from refs.^{2–6} with permission from the Elsevier).

Fig. S9. (a) TGA curves, and (b) comparison of DSC profiles of various thickness PEBAX-1657 membranes.

Zeolite	Surface area,	Pore volume (P/P _o = 0.90),					
	$m^2 g^{-1}$	$\mathrm{cm}^3 \mathrm{g}^{-1}$					
NaA	982.15	0.34					
NaY	1093.10	0.35					

Table S1. Textural parameters of zeolite molecular sieves determined by water vapor adsorption-desorption isotherms

Membrane	Diffusivity (cm ² S ⁻¹)			Selectivity			Solubility x10 ⁻⁴ (cm ³ (STP)/cm ² .cmHg)				Selectivity			
	CO ₂	N 2	O 2	CH4	CO ₂ /N ₂	CO ₂ /O ₂	CO ₂ /CH ₄	CO ₂	N_2	O ₂	CH4	CO ₂ /N ₂	CO ₂ /O ₂	CO ₂ /CH ₄
P ₁₄	2.60x10 ⁻⁶	9.29x10 ⁻⁷	2.25x10 ⁻⁷	2.88x10 ⁻⁷	2.80	11.56	9.03	65.48	3.02	35.73	33.16	21.63	1.83	1.97
P ₂₂	$1.47 \mathrm{x10}^{-6}$	1.81x10 ⁻⁶	1.89x10 ⁻⁵	5.03x10 ⁻⁷	8.12	0.78	29.22	9.73	1.46	0.41	18.85	6.65	23.85	0.52
P40	1.35x10 ⁻⁶	1.66x10 ⁻⁶	1.01x10 ⁻⁶	4.65x10 ⁻⁷	0.81	1.34	2.90	100.76	1.68	7.92	21.57	59.95	12.72	4.67
P ₇₅	1.21x10 ⁻⁶	7.28x10 ⁻⁷	7.63x10 ⁻⁷	4.12x10 ⁻⁷	1.66	1.59	2.94	70.37	3.31	8.62	20.19	21.26	8.16	3.48
P _{63A}	8.07x10 ⁻⁷	2.67x10 ⁻⁷	-	2.93x10 ⁻⁷	3.02	-	2.75	67.31	5.77	-	17.99	11.67	-	3.74
P _{56Y}	1.24x10 ⁻⁶	4.23x10 ⁻⁷	1.26x10 ⁻⁶	5.77x10 ⁻⁷	2.93	0.98	2.15	93.64	8.32	9.13	19.36	11.25	10.25	4.84

Table S2. Gas diffusivity and solubility coefficients of the different thickness pure PEBAX membranes

Membrane	P _{CO₂, Barrer}	Selectivity			Τ,	Pressure,	Polymer	Membrane	Ref.
		CO ₂ /N ₂	CO ₂ /O ₂	CO ₂ /CH ₄	°C	bar	Wt.%	thickness, µm	
PEBAX	80.0	49.0	-	-	30.0	1	3.0		7
PEBAX-40% PEG-GDMS-POSS-THF	160.0	40.4	-	-	30.0	1	3.0	-	7
PEBAX	80.0	70.0	-	-	21.0	2.3	7.5	50.0-90.0	8
PEBAX-30% PS colloid	44.0	66.0	-	-	21.0	2.3	7.5	50.0-90.0	8
PEBAX-5% SWNT	102.0	73.0	-	-	21.0	2.3	7.5	50.0-90.0	8
PEBAX	55.8	40.2	11.8	18.0	25.0	24.5	4.0	-	2
PEBAX-10% 4A zeolite	97.0	54.0	12.4	26.5	25.0	24.5	4.0	-	2
PEBAX	88.4	49.4	-	20.4	25.0	2	4.5	80.0-100.0	3
PEBAX-2% MWCNT	119.3	51.5	-	17.6	25.0	2	4.5	80.0-100.0	3
PEBAX	56.0	40.0	-	-	35.0	4	10.0	25.0	4
PEBAX-2% ATP	77.0	52.0	-	-	35.0	4	10.0	30.0	4
PEBAX	70.3	63.9	-	18.5	25.0	2	6.0	-	9
PEBAX-30% TEOS	41.8	64.3	-	16.1	25.0	2	6.0	-	9
PEBAX	115.0	48.0	-	18.0	30.0	2	3.0	65.0-85.0	5
PEBAX-Pro(Silica)	161.5	82.8	-	65.5	25.0	1	3.0	65.0-85.0	5
P ₁₄	184.7	59.7	22.6	18.0	25.0	2.7	2.5	14.0	This work

Table S3. Comparison of literature reported pure PEBAX as well as MMM with as synthesize different thickness pure PEBAX membranes

References

- 1 Y. Li, S. Wang, H. Wu, J. Wang and Z. Jiang, J. Mater. Chem., 2012, 22, 19617–19620.
- R. Surya Murali, A. F. Ismail, M. A. Rahman and S. Sridhar, *Sep. Purif. Technol.*, 2014, 129, 1–8.
- S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian and Z. Jiang, J. Memb. Sci., 2014, 460, 62–70.
- 4 L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen and C. Wang, *J. Memb. Sci.*, 2016, **500**, 66–75.
- 5 Q. Xin, Y. Zhang, T. Huo, H. Ye, X. Ding, L. Lin, Y. Zhang, H. Wu and Z. Jiang, J. *Memb. Sci.*, 2016, **508**, 84–93.
- Y. Li, X. Li, H. Wu, Q. Xin, S. Wang, Y. Liu, Z. Tian, T. Zhou, Z. Jiang, H. Tian, X.
 Cao and B. Wang, J. Memb. Sci., 2015, 493, 460–469.
- M. M. Rahman, S. Shishatskiy, C. Abetz, P. Georgopanos, S. Neumann, M. M. Khan,
 V. Filiz and V. Abetz, *J. Memb. Sci.*, 2014, 469, 344–354.
- 8 B. Yu, H. Cong, Z. Li, J. Tang and X. S. Zhao, *J. Appl. Polym. Sci.*, 2013, **130**, 2867–2876.
- A. Ghadimi, T. Mohammadi and N. Kasiri, *Ind. Eng. Chem. Res.*, 2014, 53, 17476– 17486.