Two-dimensional Graphene Paper Supported Flexible Enzymatic Fuel Cell

Fei Shen, ${ }^{a}$ Dmitry Pankratov, ${ }^{\text {a }}$ Arnab Halder, ${ }^{a}$ Xinxin Xiao, ${ }^{\text {a }}$
Miguel D. Toscano ${ }^{\text {b }}$, Jingdong Zhang, ${ }^{\text {a }}$ Jens Ulstrup, ${ }^{\text {a }}$ Lo Gorton, ${ }^{\text {c }}$ Qijin Chi*a

a Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
b Novozymes A/S, Krogshoejvej 36, 2880 Bagsvcerd, Denmark
b Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden

* Corresponding author. E-mail: cq@kemi.dtu.dk; Phone: +45 45252032; Fax: +45 45883136

Supporting figures

Fig. S1 AFM image and corresponding cross-sectional height profile of GO nanosheets. Image size: 10 $\mu \mathrm{m} \times 10 \mu \mathrm{~m}$.

Fig. S2 Electrochemical characterization of GP electrodes using the redox probe $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-14}$. (A) CVs of GP electrode in $10 \mathrm{mM} \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with 0.1 M KCl electrolyte. (B) Peak current versus the square root of scan rate. Scan rate: 5, 10, 20, 50, 100, 150, $200 \mathrm{mV} / \mathrm{s}$.

Fig. S3 (A) Schematic illustration of the $\pi-\pi$ stacking interaction between a MB molecule and graphene paper surface to adsorb MB. (B) CVs of MB modified graphene electrode in phosphate buffer (10 mM , pH 7.0) with 20 successive scans recorded at a scan rate of $100 \mathrm{mV} / \mathrm{s}$. (C) The structures of oxidized and reduced MB.

Fig. S4 (A) CVs of MB modified graphene paper electrodes with different scan rates in phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0$). (B) Linear relation between the peak current and scan rate up to $0.4 \mathrm{~V} / \mathrm{s}$. Scan rates: $0.005,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5 \mathrm{~V} / \mathrm{s}$.

Fig. S5 Plot of $1 / \mathrm{m}$ vs scan rate using the data obtained in the scan rate range 0.03 to $0.5 \mathrm{~V} / \mathrm{s}$. The solid line is the best linear fit.

Fig. S6 CVs of MB modified graphene paper electrode in the absence (black curve) and presence of 5 mM glucose (red curve) in phosphate buffer (10 mM , pH 7.0). Scan rate: $5 \mathrm{mV} / \mathrm{s}$.

Fig. $\mathbf{S 7}$ CVs for electrocatalytic oxidation of glucose at GDH bioanode in phosphate buffer ($10 \mathrm{mM}, \mathrm{pH}$ 7.0) with various concentrations of glucose. Scan rate: $5 \mathrm{mV} / \mathrm{s}$

Fig. S8 LSVs for the bioanode and biocathode in air-saturated phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0$) with 6.4 mM glucose. Scan rate: $5 \mathrm{mV} / \mathrm{s}$

Fig. S9 Stability tests of the EBFC in (A) a static solution and (B) a stirred solution. The current was recorded at the maximum power output potential in an oxygen-saturated phosphate buffer ($10 \mathrm{mM}, \mathrm{pH} 7.0$) containing 5 mM glucose.

Table S1. The power density output of EBFCs before and after bending to various angles.

Bending angles	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$	$\mathbf{1 2 0}^{\circ}$	$\mathbf{1 5 0}^{\circ}$	$\mathbf{1 8 0}^{\circ}$
Internal resistance ($\mathbf{\Omega})$	1.03×10^{5}	0.99×10^{5}	1.06×10^{5}	1.08×10^{5}	1.10×10^{5}	0.95×10^{5}	1.02×10^{5}
$\mathbf{P}_{\text {initial }}\left(\boldsymbol{\mu W / \mathbf { c m } ^ { 2 })}\right.$	3.94	4.08	3.75	3.76	3.97	3.81	4.02
$\mathbf{P}_{\mathbf{x}^{\circ}}\left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)$	3.62	3.81	3.42	3.49	3.64	3.57	3.73
$\mathbf{P}_{\mathbf{x}^{\circ}} / \mathbf{P}_{\text {initial }}$	91.88%	93.38%	91.2%	92.82%	91.69%	93.7%	92.79%
Normalization 100%	101.63%	99.26%	101.02%	99.79%	101.98%	100.99%	

