Supporting Information

ZnX₂ Mediated Post-Synthetic Transformation of Zero Dimensional Cs₄PbBr₆ Nanocrystals for opto-electronic applications

Sumit Kumar Sharma,^{^#} Swati Mamgain,^{\$#} Burhanuddin Attarwala,^{\$} Aswani Yella^{\$*}

[^] Centre of Research in Nanotechnology and Science, Indian Institute of Technology Bombay, 400076, India.

\$Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, India.

Both the authors contributed equally * Corresponding Author

Figure S1: Comparison of the absorption spectra of the CsPbBr₃ NCs and ZnBr₂ treated Cs₄PbBr₆ NCs.

Figure S2. Photograph of the ZnBr2 treated nanocrystal dispersion(left) and CsPbBr3 nanocrystal dispersion (right) after 2 months.

Figure S3: PL of ZnBr₂, MnBr₂ and CuBr₂ treated Cs₄PbBr₆ NCs.

Figure S4: TEM and HRTEM images of CsPbBr₃ NCs synthesized by hot injection method.

Figure S5: High-resolution XPS spectrum of pristine Cs₄PbBr₆ NCs for Pb 4f.

Figure S6: High-resolution XPS spectrum of ZnBr₂ treated Cs₄PbBr₆ NCs for Pb 4f.

Figure S7: XPS spectra of pristine, ZnBr₂ and ZnI₂ treated Cs₄PbBr₆ NCs

Figure S8 Photodetector response for the device fabricated using ZnBr₂ treated NC samples.